
Measurable Scenario Description
Language Reference
Version 20.07

Last generated: July 2020

Copyright ©2020 Foretellix Ltd.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
document except in compliance with the License.

You may obtain a copy of the License at [https://www.apache.org/licenses/
LICENSE-2.0](https://www.apache.org/licenses/LICENSE-2.0)

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the
License.

Table of Contents

M-SDL Language Reference Manual
1. Introduction... 5

2. Using M-SDL... 7

2.1. M-SDL building blocks... 7

2.2. Example scenarios ... 8

3. M-SDL Basics ... 13

3.1. Lexical conventions.. 13

3.2. Document conventions .. 14

3.3. User-defined identifiers, constants and keywords... 16

3.4. Predefined identifiers ... 16

3.5. Overview of M-SDL constructs .. 19

3.6. M-SDL file structure ... 21

3.7. Actor hierarchy and name resolution ... 22

3.8. Data types .. 24

3.9. M-SDL operators and special characters .. 29

3.10. User task flow... 30

3.11. Terminology.. 31

4. Predefined AV types... 35

4.1. Predefined actors ... 35

4.2. Predefined env actor .. 36

4.3. Predefined car actor... 36

4.4. Predefined AV enumerated types .. 44

5. Inheritance .. 46

5.1. Introduction .. 46

5.2. Extension.. 47

5.3. Unconditional inheritance... 47

5.4. Conditional inheritance... 48

5.5. Scenario inheritance... 51

5.6. The in modifier.. 51

6. Statements.. 53

6.1. actor ... 53

6.2. enumerated type .. 55

6.3. extend... 57

6.4. import ... 59

6.5. modifier .. 61

Measurable Scenario Description Language Reference PDF last generated: July 10, 2020

i

6.6. scenario.. 63

6.7. struct .. 66

7. Struct, actor or scenario members .. 69

7.1. Coverage and performance metrics... 69

7.2. event... 77

7.3. external method declaration... 80

7.4. field... 83

7.5. keep.. 87

8. Scenario members ... 94

8.1. Scenario modifier invocation.. 94

8.2. do (behavior definition) ... 95

9. Scenario invocation.. 98

9.1. Automatic label computation ... 100

10. Operator scenarios .. 102

10.1. first_of... 102

10.2. if.. 103

10.3. match ... 104

10.4. multi_match.. 106

10.5. mix.. 108

10.6. one_of... 111

10.7. parallel .. 112

10.8. repeat ... 114

10.9. serial ... 115

10.10. try ... 116

11. Event-related scenarios... 118

11.1. emit... 118

11.2. wait ... 118

11.3. wait_time .. 119

12. Zero-time scenarios... 121

12.1. call .. 121

12.2. dut.error.. 122

12.3. end ... 122

12.4. fail ... 123

12.5. Zero-time messaging scenarios... 124

13. Movement scenarios.. 126

13.1. drive.. 126

14. Implicit movement constraints ... 128

15. Scenario modifiers ... 129

15.1. in modifier... 129

Measurable Scenario Description Language Reference PDF last generated: July 10, 2020

ii

15.2. on qualified event ... 131

15.3. synchronize .. 132

15.4. trace ... 134

15.5. until... 135

16. Movement-related scenario modifiers ... 138

16.1. acceleration .. 140

16.2. avoid_collisions .. 141

16.3. change_lane ... 141

16.4. change_speed.. 142

16.5. keep_lane ... 143

16.6. keep_position ... 144

16.7. keep_speed.. 144

16.8. lane... 145

16.9. lateral.. 147

16.10. position... 148

16.11. speed.. 151

17. Map-related scenario modifiers.. 153

17.1. path_curve.. 153

17.2. path_different_dest .. 154

17.3. path_different_origin... 155

17.4. path_explicit ... 155

17.5. path_facing... 157

17.6. path_has_sign .. 157

17.7. path_has_no_signs... 158

17.8. path_length... 159

17.9. path_max_lanes ... 160

17.10. path_min_driving_lanes.. 161

17.11. path_min_lanes .. 162

17.12. path_over_highway_junction.. 162

17.13. path_over_junction ... 164

17.14. path_over_lanes_decrease... 165

17.15. path_over_speed_limit_change.. 166

17.16. paths_overlap... 167

17.17. path_same_dest ... 168

17.18. path_same_origin ... 168

17.19. set_map.. 169

18. Change log.. 171

18.1. Version 20.07.. 171

18.2. Version 0.9.1... 172

18.3. Version 0.9.. 174

Measurable Scenario Description Language Reference PDF last generated: July 10, 2020

iii

18.4. Version 0.8.. 174

Measurable Scenario Description Language Reference PDF last generated: July 10, 2020

iv

1. Introduction
To verify the safety of an autonomous vehicle (AV) or an advanced driver assistance system
(ADAS), you need to observe its behavior in various situations, or scenarios. A scenario is a
timed sequence of actions by one or more actors, such as cars, pedestrians, environmental
conditions and the AV itself.

Using the Measurable Scenario Description Language (M-SDL), you identify actors and capture
their behavior in scenarios. For simplification and productivity, M-SDL tools such as Foretify
provide predefined actors, including the AV, other vehicles, a set of possible routes and the
environmental conditions. They also provide basic scenarios that are associated with those
actors, such as drive(), set_map(), and set_weather(). M-SDL libraries build on these basic
behaviors to create more complex scenarios that describe, for example, another car overtaking
the AV and cutting in, another car intercepting the AV at a traffic sign, or the AV entering a
highway. You can then mix these scenarios to capture more complex situations, for example,
the AV approaching a traffic sign while overtaking a bicycle, or the AV entering a highway in the
evening during a snowstorm.

Because M-SDL scenarios are abstract, parameterized, incomplete descriptions, you can
require an M-SDL tool to create many concrete variants of a scenario by varying such
parameters as speed, vehicle type, lighting conditions and so on. By allowing random
generation of a parameter, or by using constraints that specify a particular value or a range of
legal values for a parameter, you guide the M-SDL tool to generate interesting variants
automatically. In a similar manner, you can randomize or control the overlap of multiple
scenarios in a scenario mix.

You can use a scenario description in passive mode to monitor a test run on any execution
platform and determine whether the criteria for successful completion of that scenario have
been met. The M-SDL tool then collects and aggregates parameter data from successful test
runs, thus enabling you to measure the safety of your AV. Assuming that you have specified
goals for each scenario or type of scenario, you can easily identify scenarios that require more
testing.

M-SDL is a mostly declarative programming language. The only scenario that executes
automatically is the top-level scenario. You control the execution flow of the program by
adding scenarios to that top-level scenario. M-SDL tools provide various built-in scenarios
that, for example, let you choose the scenario to execute based on a condition, or randomize
the selection of a scenario from a list.

M-SDL is an object-oriented and aspect-oriented programming language. This means you can
modify the behavior or aspects of some or all instances of an object (an actor, a scenario or a
data structure) to suit the purposes of a particular verification test, without disturbing the
original description of the object.

Introduction PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 5

The language definition provided in this manual is accurate at the time of publication. M-SDL is
expected to evolve over time in order to align with relevant standards as they emerge. To see a
list of changes to this manual since the last release, refer to Change log (page 171).

Introduction PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 6

2. Using M-SDL
Summary: This topic shows how to create and reuse M-SDL scenarios.

M-SDL is a small, domain-specific language designed for describing scenarios where actors
(sometimes called agents), such as cars and pedestrians, move through an environment. These
scenarios have parameters that let you control and constrain the actors, the movements and
the environment.

M-SDL is designed to facilitate the composition of scenarios and tests, making it possible to
define complex behaviors using your own methodology. A minimal, extensible set of actors
and scenarios comprise the fundamental building blocks. Some built-in scenarios perform
tasks common to all scenarios, such as implementing parallel execution. Others describe
relatively complex behavior, such as the car.drive scenario. By calling these scenarios, you
can describe even more complex behavior, such as a vehicle approaching a yield sign. For
further complexity, multiple scenarios can be mixed. For example, a weather scenario can be
mixed with a car scenario.

It is easy to create new actors and new scenarios as the need arises, either from scratch, or
using what you have defined so far. For example, the scenario cut_in, presented below, is
defined using the scenario car.drive.

There will eventually be a standard scenario library, possibly containing both the drive and
cut_in scenarios, but organizations will be able to add or customize scenarios as needed.

2.1. M-SDL building blocks
The building blocks of M-SDL are data structures:

• Simple structs – a basic entity containing attributes, constraints and so on.

• Actors – represent real world entities. They are like structs, but also have associated
scenarios.

• Scenarios – describe the behavior of actors.

• Modifiers – modify the behavior of scenarios.

These structures have attributes that hold scalar values, lists, and other structures. Attribute
values can be described as expressions or calculated by external method definitions. You can
control attribute values with keep() constraints, for example:

Using M-SDL PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 7

scenario traffic.scenario1:

my_speed: speed

keep(my_speed < 50kph)

You can control attribute values in scenarios either with keep() constraints or with scenario
modifiers such as speed().

do parallel():

car1.drive(path)

car2.drive(path) with:

speed(speed: 20kph, faster_than: car1)

Structures also define events, for example:

event deep_snow is (snow_depth > 15cm)

You can describe scenario behavior by calling the built-in scenarios. You can call the operator
scenarios serial, parallel, or mix, to implement your scenario in a serial or parallel execution
mode or to mix it with another scenario. Other built-in scenarios implement time-related
actions, such as emit, wait, or error reporting.

2.2. Example scenarios
Now let’s look at some examples.

Example 1 shows how to define and extend an actor. The actor car_group is initially defined
with two attributes.

Example 1

Define an actor

actor my_car_group:

average_distance: distance

number_of_cars: uint

Then it is extended in a different file to add another attribute.

Using M-SDL PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 8

Extend an actor in a separate file

import my_car_group.sdl

extend my_car_group:

average_speed: speed

Example 2 shows how to define a new scenario called two_phases. It defines a single actor,
car1, which is a green truck. It uses the serial operator to activate the car1.drive scenario,
and it applies the speed() modifier.

two_phases works as follows:

• During the first phase, car1 accelerates from 0 kph to 10 kph.

• During the second phase, car1 keeps a speed of 10 to 15 kph.

Note: two_phases is very concrete because the value for each parameter is defined explicitly.
We’ll see how to define more abstract scenarios later.

Example 2

A two-phase scenario

scenario traffic.two_phases: # Scenario name

Define the cars with specific attributes

car1: car with:

keep(it.color == green)

keep(it.category == truck)

path: path # a route from the map; specify map in the test

Define the behavior

do serial:

phase1: car1.drive(path: path) with:

speed(speed: 0kph, at: start)

speed(speed: 10kph, at: end)

phase2: car1.drive(path: path) with:

speed(speed: [10..15]kph)

Example 3 shows how to define the test to be run:

1. Import the proper configuration. In this case we want to run this test with the SUMO
simulator.

2. Import the two_phases scenario we defined before.

3. Extend the predefined, initially empty top.main scenario to invoke the imported two_phases
scenario.

Using M-SDL PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 9

Example 3

import sumo_config.sdl

import two_phases.sdl

extend top.main:

set_map(name: "hooder.xodr") # specify map to use in this test

do two_phases()

Example 4 shows how to define the cut in scenario. In it, car1 cuts in front of the dut.car,
either from the left or from the right. dut.car, also called the ego car, is predefined.

Note: This scenario is more abstract than two_phases. We’ll see later how we can make it
more concrete if needed.

It has three parameters:

• The car doing the cut in (car1).

• The side of the cut in (left or right).

• The path (road) used by the two cars, constrained to have at least two lanes.

Then we define the behavior:

• In the first phase, get_ahead, car1 gets ahead of the dut.car. This phase ends within
1 to 5 seconds, as defined by the duration parameter, when car1 gets ahead of
dut.car by 5 to 15 meters, as defined by the second position() modifier.

• In the second phase, change_lane, car1 cuts in front of the dut.car. This phase starts
when get_ahead finishes and ends within 2 to 5 seconds when car1 is in the same
lane as dut.car.

Note that both the serial and parallel operators are used in this scenario. The two phases are
run in sequence, but within each phase, the movement of car1 and dut.car are run in parallel.

The scenario modifiers speed(), position() and lane() are used here. Each can be specified
either in absolute terms or in relationship to another car in the same phase. Each can be
specified for the whole phase, or just for the start or end points of the phase.

Example 4

Using M-SDL PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 10

The cut-in scenario

scenario dut.cut_in:

car1: car # The other car

side: av_side # A side: left or right

path: path

path_min_driving_lanes(path: path, min_driving_lanes: 2) # at least two lanes

do serial():

get_ahead: parallel(duration: [1..5]s): # get_ahead is a label

dut.car.drive(path: path) with:

speed(speed: [30..70]kph)

car1.drive(path: path, adjust: true) with:

position(distance: [5..100]m,

behind: dut.car, at: start)

position(distance: [5..15]m,

ahead_of: dut.car, at: end)

change_lane: parallel(duration: [2..5]s): # change_lane is a label

dut.car.drive(path: path)

car1.drive(path: path) with:

lane(side_of: dut.car, side: side, at: start)

lane(same_as: dut.car, at: end)

Example 5 shows how to define the two_cut_in scenario using the cut_in scenario. It
executes a cut in from the left followed by a cut in from the right. Furthermore, the colors of the
two cars involved are constrained to be different.

Example 5

Do two cut-ins serially

import cut_in.sdl

scenario dut.two_cut_ins:

do serial():

c1: cut_in(side: left) # c1 is a label

c2: cut_in(side: right) # c2 is a label

with:

keep(c1.car1.color != c2.car1.color)

Example 6 shows how to run cut_in with concrete values. The original cut_in specified
ranges, so by default, each run would choose a random value within that range. However, you
can make the test as concrete as you want using constraints.

Example 6

Using M-SDL PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 11

Run cut_in with concrete values

import cut_in.sdl

extend top.main:

do cut_in() with:

keep(it.get_ahead.duration == 3s)

keep(it.change_lane.duration == 4s)

Example 7 shows how to mix multiple scenarios: the cut_in scenario, another scenario called
interceptor_at_yield, and a weather scenario. The mix_dangers scenario has a single
attribute of type weather_type, which is constrained to be not clear, because we want a
dangerous situation. This attribute is passed to weather.

Example 7

Mixing multiple scenarios

import interceptor.sdl

import interceptor_at_yield.sdl

import cut_in.sdl

scenario dut.mix_dangers:

weather: weather_type

keep(weather != clear)

do mix():

cut_in()

interceptor_at_yield()

weather(kind: weather)

Example 8 runs mix_dangers. In this case we chose to specify a concrete weather (rain)
rather than letting it be a random, not-clear weather.

Example 8:

Activating mix_dangers

import mix_dangers_top.sdl

extend top.main:

do mix_dangers() with:

keep(it.weather == rain)

Using M-SDL PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 12

3. M-SDL basics
Summary: This topic describes basic features of the M-SDL language.

3.1. Lexical conventions
M-SDL syntax is similar to Python. An M-SDL program is composed of statements that declare
or extend types such as structs, actors, scenarios, or import other files composed of
statements. Each statement includes an optional list of members indented one unit (a
consistent number of spaces) from the statement itself. Each member in the block, depending
on its type, may have its own member block, indented one unit from the member itself. Thus,
the hierarchy of an M-SDL program and the place of each member in that hierarchy is
indicated strictly by indentation. (In C++, the beginning and end of a block is marked by curly
braces {}.)

In the following figure, the code blocks are indicated with a blue box.

Figure 1 Code blocks

Common indentation indicates members at the same level of hierarchy. It is recommended to
use multiples of four spaces (blanks) to indicate successive hierarchical levels, but multiples of
other units (two, three and so forth) are allowed, as long as usage is consistent. Inconsistent
indentation within a block is an error. If you use tabs, you must set the editor to translate tabs
to spaces.

Empty lines and single-line comments do not require a specific indentation.

Members (other than strings) that are too long to fit in a single physical line can be continued to
the next line after placing a backslash character (\) before the newline character.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 13

object:

member ... \

next line of same member \

end of member

member

However, a line with an open parenthesis (or open square bracket [flows across newlines with
no need for a backslash character.

You can concatenate strings with the plus character (+):

"a string" + " with continuation"

And you can continue strings onto multiple lines with the backslash character (\).

"a string" + \

" with continuation"

Inline comments are preceded by a hashtag character (#), and they end at the end of the line.
Block comments are allowed. The first line in the block must begin with the /* characters and
the last line must end with */. Nested block comments are allowed. Newlines within comments
and indentation of comments does not affect code nesting.

Example

/*

This is the first line of a block comment.

/* This is a nested comment. */

This is also a nested comment.

This is the last line of the block comment.

*/

extend top.main:

do cut_in() with: # This is an inline comment

keep(it.get_ahead.duration == 3s)

keep(it.change_lane.duration == 4s)

3.2. Document conventions
This document uses the following conventions to display syntax:

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 14

• Items that you can specify are shown within angle brackets <item>.

• Optional items are shown within square brackets [<item>].

• Items that you must choose between are shown separated by a bar <item> | <item>.

• Items that you can specify in a list are indicated by <item>*, meaning zero or more
items of that type in the list, or by <item>+, meaning one or more items in the list.
Parameter lists require commas between the parameters.

• Lists that require a separator other than a comma are shown with the separator and an
ellipsis ;...

For example, given the syntax:

[!]<field-name>:[<type>][with:

<member>+]

• The do-not-generate operator ! specifies that no value should be generated for this
field before the run executes. Instead, a value is generated or assigned during the run.

• <field-name>: is required. All other items are optional.

• with, if specified, must have at least one member.

For example, the following field declarations are valid:

!current_speed: speed

start_speed: speed with:

keep(it < 100kph)

cars: list of car with:

keep(soft it.size() <= 10)

Notes about these examples:

• In the second example, the start_speed field holds a value of type speed. Within the
with block, it is an implicit variable that refers to the current item, in this case,
start_speed. A keep constraint is added to require the speed to be less than 100 km
per hour.

• In the third example, the list is constrained to have no more than 10 items.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 15

3.3. User-defined identifiers, constants and keywords
User-defined identifiers (names) in M-SDL code consist of a case-sensitive combination of any
length, containing the characters A–Z, a-z, 0-9, and underscore (_). User-defined identifiers
beginning with a digit or an underscore are not allowed.

3.4. Predefined identifiers
The following identifiers are predefined in some contexts:

• me refers to the current type (struct, actor or scenario).

• it exists in a with context, referring to the with subject.

• actor exists in scenario declarations, and refers to the related actor instance.

• outer exists in an in context, and refers to the type in which in is declared.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 16

3.4.1. Example of predefined identifiers

scenario top.C:

c_val: int

scenario top.B:

b_val: int

do c1: C()

scenario top.A:

a_val: int

do b1: B()

Example1:

extend top.A:

in1: in b1.c1 with:

keep(outer.a_val == me.b_val)

keep(me.b_val == it.c_val)

In the above example:

outer: is the A scenario

me: is the B scenario

it: is the c1 scenario inside the B scenario

Example2:

extend top:

top_val: int

extend top.A:

in2: in b1 with:

keep(actor.top_val == it.b_val)

keep(me.a_val == it.b_val)

In the above example:

actor: is top

me: is the A scenario

it: is the b1 scenario

3.4.2. Scoping rules for accessing objects within it

To access an object such as a field within it, you can either use it.<object-name> or just
<object-name>. In the latter case, if the containing object (scenario, struct, actor) has an object
with the same name, the object within it takes precedence. This scoping rule applies not just to
fields but to all other objects within it, such as events and methods.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 17

You can access an object in the containing object, even if it has the same name as an object
within it, by using the appropriate identifier. For example, if you want to access a me field that
is shadowed by an it field, you should explicitly use: me.<field>. The last line in the following
example is the same as keep(it.duration == me.duration).

scenario car.x:

do serial():

a()

b()

with:

keep(duration == me.duration)

Note: The special syntax of path expression starting with a dot (‘.’) is not allowed. For
example, keep(.duration == me.duration) is not allowed.

3.4.3. Predefined constants

M-SDL has three predefined constants: true, false, and null.

3.4.4. Keywords

The following are keywords, and cannot be used as names:

actor and any as call cover def default

do else emit empty event extend external false

first_of if import in is is also is first is only

keep label list of match mix modifier multi_match not

null on one_of or parallel properties repeat sample

scenario serial struct soft true try type undefined

until wait when with

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 18

3.5. Overview of M-SDL constructs
M-SDL constructs can be divided into the following categories, based in part on the context in
which they can appear:

• Statements

• Struct, actor or scenario members

• Scenario members

• Scenario invocations

• Expressions

The following sections describe each category and its members briefly.

3.5.1. Statements

Statements are top-level constructs that define or extend a type or import a file composed of
statements.

Enumerated type declarations define a set of explicitly named values. For example, an
enumerated type driving_style might define a set of two values: normal and aggressive.

Struct declarations define compound data structures that store various types of related data.
For example, a struct called car_collision might store data about the vehicles involved in a
collision.

Actor declarations model entities like cars, pedestrians, environment objects like traffic lights
etc. They are compound data structures that store information about these entities. In contrast
to structs, they are also associated with scenario declarations or extensions. Thus, an actor is
a collection of both related data and declared activity.

Scenario declarations define compound data structures that describe the behavior or activity
of one or more actors. You control the behavior of scenarios and collect data about their
execution by declaring data fields and other members in the scenario itself or in its related
actor or structs. Example scenarios are car.drive, dut.cut_in,
dut.cut_in_with_person_running, and so on.

Scenario modifier declarations modify, but do not define, scenario behavior, by constraining
attributes such as speed, location and so on. Scenario modifier declarations can include
previously defined modifiers.

Extensions to an existing type or subtype of an enumerated type, a struct, an actor or a
scenario add to the original declaration without modifying it. This capability allows you to
extend a type for the purposes of a particular test or set of tests.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 19

3.5.2. Struct, actor or scenario members

The constructs described in this section can appear only within a struct, actor or scenario
declaration or extension.

Field declarations define a named data field of any scalar, struct or actor type or a list of any
of these types. The data type of the field must be specified. For example, this field declaration
defines a field named legal_speed of type speed.

scenario car.my_scenario1:

legal_speed: speed

Field constraints defined with keep() restrict the values that can be assigned to or generated
for data fields. For example, because of the following keep()constraint, randomized values for
legal_speed are held below 120 kph.

scenario car.my_scenario1:

legal_speed: speed

keep(legal_speed < 120kph)

This constraint can also be written as follows, with the implicit variable it referring to the
legal_speed field:

scenario car.my_scenario1:

legal_speed: speed with:

keep(it < 120kph)

Events define a particular point in time. An event is raised by an explicit emit action in a
scenario or by the occurrence of another event to which it is bound. The events start, end and
fail are defined for every scenario type. They are emitted whenever a scenario instance starts,
ends or fails. In scenarios that invoke other scenarios, each phase may emit its own start, end
and fail.

External method declarations identify imperative code written in other programming
languages, such as C++, Python, and the e verification language, that you want to call from an
M-SDL program. For example, you might want to call an external method to calculate and
return a value based on a scenario’s parameters.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 20

3.5.3. Scenario members

Scenarios have two members that are not allowed in structs or actors.

Cover definitions let you sample key parameters related to scenario execution. Collecting this
data over multiple executions of a scenario helps you evaluate the safety of the AV. For
example, if a car actor has a field speed, you probably want to collect the value of this field at
key points during a scenario. Cover definitions appear in scenarios in order to have access to
the scenario’s parameters and to vary coverage definitions according to the scenario.

Scenario modifiers are scenarios that constrain various attributes of a scenario’s behavior.
They do not define a scenario’s primary behavior. There are both relative and absolute
modifiers. In the example below, the speed() modifier sets the speed of the affected car1 to be
1 to 5 kph faster relative to car2:

do parallel:

car2.drive(path)

car1.drive(path) with:

speed([1..5]kph, faster_than: car2)

The do scenario member defines the behavior of the scenario when it is invoked.

3.5.4. Scenario invocations

Scenario invocations extend the execution of an M-SDL program. A built-in top.main
scenario is automatically invoked. top.main needs to be extended to invoke other scenarios,
defining the behavior of the whole SDL program.

3.5.5. Expressions

Expressions are allowed in constructs as specified. The expression must evaluate to the
specified type. Expressions can include calls to external value-returning methods.

3.6. M-SDL file structure
The default extension for M-SDL files is .sdl. You can define the search path for M-SDL files by
specifying a list of directories to be searched in the SDL_PATH environment variable.

M-SDL is designed to facilitate the composition of scenarios. To that end, it lets you separate
the following components into separate files:

• Higher-level scenarios describing complex behavior.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 21

• Lower-level scenarios that you invoke from multiple, higher level scenarios.

• Coverage definitions.

• Extensions of any of the above for the purposes of a particular test.

• The definition of a test.

• The configuration of an execution platform.

The test file defines the test by:

• Importing the components of the test.

• Extending the built-in, top-level scenario top.main to

◦ Specify the map.

◦ Invoke a high-level user scenario.

Here is a simple example of a test file. The my_scenario_top.sdl file imports the top-level user
scenario, any lower-level scenarios, and the coverage definitions. The scenario invocation
constrains the weather attribute of my_scenario to be rain, illustrating how you can constrain
the attributes or behavior of a scenario for the purposes of a particular test.

import simulator_config.sdl

import my_scenario_top.sdl

extend top.main:

set_map("hooder.xodr")

do my_scenario(weather: rain)

3.7. Actor hierarchy and name resolution
MSDL defines a global scope that includes a number of predefined actors, in particular the
actor top. top and any of its fields are members of the global scope.

It is recommended to represent scenario libraries as new global actors. For example, you
should define simulator-specific scenarios for the my_sim simulator inside a global actor type
my_sim. Then, create a field in the actor top. To facilitate readability, it is recommended to use
the global actor type’s name as the field name. For example, if my_sim is a global actor type, it
is recommended to declare my_sim as follows:

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 22

extend top:

my_sim: my_sim

When an M-SDL program is executed, the top-level actor’s main scenario, top.main, is
invoked. Extending this top-level scenario to invoke a scenario creates an instance of that
scenario in the invoking scenario, as well as instances of all the scenario’s members. The
hierarchy of the tree expands level by level as each scenario instance calls other scenarios or
scenario modifiers.

Objects in the program tree such as scenario instances or fields within scenario instances can
be accessed by path expressions. A path expression comprises steps connected by dots.
Each step can be an identifier, a method call or an array element reference. The head (the first
step in the path) may be a special identifier such as outer or it. For example, cut_in.car1 is a
path expression referencing a field car1 in a scenario cut_in().

Scenario invocations can have user defined labels. Automatic labels (implicit labels) are
computed for all other invocations. Using labels, the behavior or attributes of a
specific scenario or scenario invocation can be controlled from outside the scenario. See
Automatic label computation (page 100) for how automatic labels are computed.

3.7.1. Scenario name resolution

Scenarios reside in the namespace of their actor, so there can be a car.turn() and a
person.turn(). When scenario car1.slow_down() invokes a lower-level scenario turn(), these
rules determine which actor’s scenario turn() is called:

• If you specify the actor instance for turn() explicitly, for example car2.turn(), the actor
is car2.

• Else if car1’s actor type (car) has a scenario turn(), then car1 is used.

• Else if a global actor (an actor member of top) has a scenario turn(), then that actor is
used.

• Else this is an error.

Notes:

• Invoking the generic form of the scenario (actor.scenario) is not allowed. A scenario
invocation must be associated with an actor instance.

• Scenario modifiers are searched by the same rules as scenarios.

3.7.2. Name resolution for other objects

Here are the scoping rules when referring to an object other than a scenario, such as a field,
method or event x inside a struct, actor, or scenario y.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 23

If you refer to x via a path (car1.x) then that path is used.

Else if you refer to x using the implicit variable it.x, the path of the object referred to by it is
used. (it is available only in certain contexts.)

Else if y has an object x, its path is used.

Else if y is a scenario of actor z, and z has an object x, that object’s path is used.

Else if x is in the global scope, x is used.

Else this is an error.

Example

actor z:

x: int

scenario z.y:

keep(x == 2) # resolves to z.x

3.8. Data types
M-SDL defines the following data types:

• Scalar types hold one value at a time: numeric, Boolean and enumerated.

• List types hold an ordered collection of values of one type.

• String types hold a sequence of ASCII characters enclosed in double quotes.

• Resource types hold a list of resources such as map junctions and segments.

• Compound types hold multiple values of multiple types.

3.8.1. Generic numeric types

The generic numeric types are scalar types. You do not need to specify a unit of measurement
for generic numeric types. Generic numeric types include signed and unsigned integers of 32
or 64 bits in size as well as reals, represented as 64-bit floating point numbers. Reals are
equivalent to C++ double.

You can specify integers in decimal or hexadecimal format (prefixed with 0x). Commas are not
allowed, but you can add an underscore for readability, for example, 100_000. For reals, a
decimal point may be used, as well as an exponent notation, either positive or negative. The
compiler currently supports, for example:

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 24

123.45

123.45e+6

123.45E+6

.45e+06

Name Type

int 64-bit integer

uint 64-bit unsigned integer

real 64-bit floating point number

3.8.2. Physical types

Physical types are used to characterize physical movement in space, including speed,
distance, angle and so on. When you specify a value for one of these types in an expression, or
when you define coverage for it, you must use a unit. The unit must be appended to the value
without spaces. As shown in the table below, you have a choice of units for the most
commonly used types.

Physical constants have implied types. For example, 12.5km has an implied type of distance.

Physical expressions that use fields rather than constants, such as start_speed-1kph are
allowed in ranges.

Arithmetic expressions involving physical types are resolved using dimensional analysis. For
example, distance/time resolves to speed.

Examples:

2meter

1.5s

[30..50]kph

[(start_speed-1kph)..(start_speed+1kph)]

6m/3s

Name Units

acceleration kphps (= kph per second), mpsps or meter_per_sec_sqr (= meters per
second per second)

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 25

Name Units

angle deg, degree, rad, radian

angular_speed degree_per_second, radian_per_second

distance mm, millimeter, cm, centimeter, in, inch, feet, m, meter, km, kilometer,
mile

speed kph, kilometer_per_hour, mph, mile_per_hour, meter_per_second, mps

temperature c, celsius, f, fahrenheit

time ms, millisecond, s, sec, second, min, minute, hr, hour

weight kg, kilogram, ton

3.8.3. Boolean types

The Boolean type is called bool and represents truth (logical) values, true or false.

true_value: bool with:

keep(it == true)

3.8.4. Enumerated types

Enumerated types represent a set of explicitly named values. In the following example, the
enumerated type my_driving_style has two values, aggressive and normal.

type my_driving_style: [aggressive, normal]

3.8.5. List types

A list is a way to describe an ordered collection of similar values in M-SDL. A list can contain
any number of elements from a data type, including:

• Calls to methods that return the same data type as that of the list.

• The results of an operation, such as the evaluation of a Boolean expression.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 26

For example, you can declare a convoy to contain a list of car actors, or a shape as a list of
points.

List literals are defined as a comma-separated list of items, for example:

[point1, point2]

The [n..n] notation is not allowed for lists; it is reserved for ranges.

Example lists

convoy: list of car

shape: list of point

Example list assignment

shape2: list of point with:

keep(it == [map.explicit_point("-15",0,20m,1),

map.explicit_point("-15",0,130m,1)])

Example list constraint

distances: list of distance with:

keep(it == [12km, 13.5km, 70km])

3.8.6. String type

The M-SDL predefined type string is a sequence of ASCII characters enclosed in double
quotes (“”). Single quotes are not allowed.

In the following example, the implicit variable it refers to the field text.

struct data:

text: string with:

keep(it == "Absolute speed of ego at start (in km/h)")

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 27

The default value of a field of type string is null. This is equivalent to an empty string,“”.

Use string interpolation (embedding $() in a string) to construct strings out of non-string values.
The $() operator converts an expression to a string and inserts it in place. For example:

do serial:

log_info("There are $(cars.size()) cars.")

You can concatenate multiple strings with the + character. For example:

"a string" + " with continuation"

You can continue strings onto multiple lines with the + character and \ character:

"a string" + \

" with continuation"

Within a string, the backslash is an escape character, for example:

"My name is: \tJoe"

3.8.7. Resource types

Resource types include junction and segment. They hold a global list of locations on the
current map.

3.8.8. Compound types

M-SDL defines three built-in compound types:

• Scenarios define behavior, such as a car approaching a yield sign, a pedestrian
crossing the street, and so on. Scenarios define behavior by activating other
scenarios. M-SDL provides a library of built-in scenarios describing basic behavior,
such as moving, accelerating, turning and so on.

• Actors typically represent physical entities in the environment and allow scenarios to
define their behavior. M-SDL provides a set of built-in actors, including car, traffic,
env, and so on. If you create an instance of the actor car in a program with the name
my_car, its built-in scenario drive can be invoked as my_car.drive.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 28

• Structs define sets of related data fields and store the values assigned or generated
by the program for those fields. For example, a struct might store a car’s location,
speed, and distance from other cars at a particular time.

You can extend compound types to include new attributes. For example, you can extend the
predefined actor car to include new data fields, events, scenarios and so forth. Because
extension modifies the type being extended, all instances of the type get the newly added
attributes.

You can pass the attributes of a compound type to a new compound type using simple
inheritance. For example, you can create a new actor my_car that inherits the attributes of car.
You can then add new attributes. Simple inheritance does not modify the original type.

You can also pass the attributes of a compound type to a new compound type using
conditional inheritance. With conditional inheritance, a type is extended only when a specified
condition is true. For example, if an actor my_car has a field of type driving_style, the actor’s
attributes or behaviors can be different when the value of driving style is aggressive from
when it is normal. Like simple inheritance, conditional inheritance does not modify the original
type.

3.9. M-SDL operators and special characters
M-SDL supports the use of the following operators in expressions.

Operator
type

Operators Description

Boolean
comparison

==, !=, <, <=, >,
>=

Compares two expressions and returns a Boolean

Boolean
compound

and, or, => Join two simple Boolean expressions

Boolean
negation

!, not Negate a Boolean expression

List index-
ing

[n] Reference an item in a list

Boolean
implication

<exp1> =>
<exp2>

Returns true when the first expression is false or when
the second expression is true. This construct is the same
as: (not exp1) or (exp2)

Range [range] Reference a range of values, any of the following or com-
bination of the following: [i..] [i..j] [..j]

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 29

Operator
type

Operators Description

If then else x ? y : z Select an expression

Arithmetic + - * / % Perform arithmetic operations

Type check is(<type>) Check whether an object is a specified type

Type cast <path-to-ob-
ject>.as(<type-
name>)

Cast an object to the specified type

These expression operators are distinct from special characters used in other contexts:

• The do-not-generate character ! is used only in field declarations to prevent pre-run
generation of random values for the field. (A value is generated or assigned during the
run instead.)

• The at character @ is used in a qualified event to indicate the pathname of an event,
for example @main_car.arrived.

• The backslash character \ is used to continue a member over multiple lines or, within a
string, to escape a character, for example “\t”.

• The plus character + is used with the line continuation character \ to concatenate a
string continued over multiple lines.

• The dollar character $ is used for interpolation within string literals and is otherwise
reserved for internal use. When it appears in this document it indicates either string
interpolation, a shell environment variable or an internal M-SDL resource.

• The character combination => is a syntactic marker used to bind an event’s data to an
identifier, so that the data is accessible for other purposes, such as coverage.

3.10. User task flow
The verification task flow that M-SDL supports is as follows:

1. Plan the verification project.

• Identify the top-level scenario categories that represent risk dimensions such as urban
driving, highway driving, weather, sensor malfunction and so on.

• Identify the scenario subcategories. For example, lane-changes may be a subcategory
of highway driving.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 30

• Identify the behaviors in each scenario subcategory. For example, cutting-in-and-
slowing-down would be a behavior in the lane changes subcategory.

• Identify the coverage collection points you can use to determine how thoroughly each
scenario has been covered (exercised successfully). For example, the cutting-in-and-
slowing-down behavior might have coverage points including road conditions,
distance, and speed.

• identify the checking criteria (grading) used to judge how well the dut performed in
various scenarios.

• Identify coverage goals for those behaviors and scenarios.

2. Create the verification environment.

• Describe the scenarios, behaviors and coverage points in M-SDL, basing them on
lower-level built-in scenarios or available in a library.

• Identify the DUT and the execution platform.

• Identify any other additional tools you will use.

3. Automate test runs.

• Write tests, possibly mixing scenarios from different subcategories, such as cutting-in-
and-slowing-down with conflicting-lane-changes.

• Launch multiple runs with different values for the scenario’s variables, such as road
conditions, speed and visibility.

4. Analyze failures.

• Identify the cause of any checking error, such as collision or near collision.

• Fix the DUT or apply a temporary patch so that tests can continue.

• Rerun all failed runs automatically.

5. Track progress.

• Analyze the coverage data correlated with each goal specified in the verification plan
to determine which scenarios have not been adequately tested.

• Write new tests to reach those corner cases.

3.11. Terminology
This section defines the terms used to describe M-SDL, M-SDL entities, and M-SDL tools.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 31

Term Definition

abstract
scenario

A scenario whose constrainable fields are defined with a range of possible val-
ues

basic
clock

Is the fastest occurring event. In simulation context it is emitted on each call-
back from the simulator. It is sometimes referred to as top.clk.

bucket A subrange of a range of possible values for a constrainable field defined to fa-
cilitate coverage analysis.

built-in Data types, including enumerated types, actors, scenarios and structs that are
predefined in an M-SDL tool.

concrete
scenario

The result of solving a scenario while obeying all the constraints and randomiz-
ing where needed. A concrete scenario has a concrete value for every at-
tribute.

constraint A restriction on the possible values for a field or a movement made for the pur-
pose of a specific test or run.

cover item A field whose value you want to collect at specific times during a run. A cover
item’s value is updated by sampling.

cover
group

A group of fields whose values are collected at the same time during a run.

coverage
collection
point

An abstract term for a cover item or cover group. A verification plan identifies
coverage collection points or attributes whose values you want to collect.

coverage
goal

The percentage of runs that need to execute successfully in order to declare
that the behavior tested is safe.

coverage
hole

An aspect of a behavior defined in a scenario for which no coverage data has
been collected.

coverage
metrics

The data collected that lets you determine whether the coverage goals have
been met.

directed
scenario

A scenario whose fields have been constrained to a narrower range of values
or to a specific value.

dut The device under test. For AVs, the dut is also known as the ego.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 32

Term Definition

dut error An unsafe behavior of the dut.

execution
platform

The platform on which an M-SDL program executes, such as a simulator, pos-
sibly with hardware-in-the-loop, or even the AV on an actual track

functional
scenario

A scenario that evaluates the compliance of a system or component with
specified functional requirements.

generation A part of the planning process that creates the data structure and assigns val-
ues to fields according to the specifications provided in type declarations and
constraints. Fully random generation assigns values to fields depending on
their defined data type (the legal values). Constrained random generation as-
signs values within the restrictions defined in constraints.

grading/
checking

The process of determining how well the dut performed in a particular run or
set of run according to some performance criteria such as safety, comfort and
so on.

library A set of predefined data types, including enumerated types, actors, scenarios
and structs that is available separately from an M-SDL tool.

multi-test An M-SDL tool’s facility for creating multiple test files from a single test and
the value tuples of its constrainable fields.

nested
scenario

A scenario invoked from within another scenario.

parallel A set of actions in a scenario that are executed concurrently.

path ex-
pression

Comprises steps connected by dots. Each step can be an identifier, a method
call or an array element reference. The head (the first step in the path) may be
a special identifier such as outer or it.

phase An informal term that describes any scenario invocation within another sce-
nario. As a specific example, do serial is often used to define the behavior of a
scenario. Any scenario invocation within this behavioral definition, whether it is
another builtin scenario such as parallel or a user-defined scenario, is a
phase.

planning An M-SDL tool’s process of creating a program tree and determining the se-
quencing of actions.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 33

Term Definition

program
tree

A hierarchical instance tree created during planning when a scenario is in-
voked from the predefined, top-level scenario top.main in an M-SDL tool. An
instance of that scenario and its members, including nested scenarios and
their members, recursively.

raw met-
rics

Coverage metrics that are not mapped to a verification plan.

scenario A description of the attributes and behavior of one or more actors.

scenario
failure

An error indicating that a run did not meet the scenario goal, as expressed by
the modifier set and additional constraints.

seed A numeric value that is used to initiate generation. Using the same seed for
multiple runs results in the same generated values. This behavior is useful
when you want to re-execute a run. Using different seeds results in different
generated values.

serial A set of actions in a scenario that are executed in sequence.

test The description of what to run, including an extension of the top-level scenario
top.main. A test and a seed together determine a run.

test file An M-SDL file containing the definition of a test containing the specification of
an execution platform, a map, and an extension of the top-level scenario
top.main to define the behavior of the test.

test suite A set of tests designed to verify a particular behavior and attributes or a set of
those.

regression A set of tests designed to ensure that previously defined and tested behavior
still performs after a change.

run A single execution of a test.

run group Multiple executions of a test with varied constraints on the behavior and attrib-
utes of a scenario.

vplan A verification plan that defines the behavior to be tested, the coverage collec-
tion points and the coverage goals.

M-SDL basics PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 34

4. Predefined AV types
Summary: This topic describes the predefined types for AV.

There are predefined actors and types that you can extend or constrain to facilitate the
verification of your AV.

4.1. Predefined actors
An M-SDL environment contains several predefined actors.

The actor top contains instances of the following actors:

• builtin represents M-SDL’s built-in scenarios, for example the operator scenarios.

• av_sim_adapter represents M-SDL’s simulator interface.

• map represents the sets of paths traveled by actors.

• traffic represents cars, pedestrians and so on.

• env represents environmental systems and has scenarios such as weather and time of
day.

• dut represents the AV system or device under test.

Under traffic, there is a list called cars of car actors.

Under dut there is

• A dut.car of type car represents the actual dut car (also called the ego)

• Possibly other actors, corresponding to various supervisory functions and so on.

Note: Because map, env, traffic and dut are instantiated as fields in top, you can access
them directly as global actors, without reference to their place in the hierarchy, for example:

keep(dut.car.color == green)

You can extend any actor in this hierarchy to add actors. M-SDL can create actors before or
during a run. Upon creation, an actor’s fields are randomized according to the constraints you
have specified and its built-in start scenario starts running in active mode. A start scenario can
execute other scenarios, and these also run in active mode.

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 35

The scenario top.main() is called indirectly from top.start(). This scenario is initially empty and
defines what the test does. Thus, to make your test run the cut_in_and_slow scenario, you
can extend top.main:

extend top.main:

do c: cut_in_and_rain()

4.2. Predefined env actor
The env actor is a global actor, and contains all environment-related activity. It has scenarios
which change the environment like weather and time_of_day, for example:

weather(kind: rain, temperature: 12.5c)

timing(time_of_day: evening, specific_time: 18hr)

The type part is morning, noon, evening, or night and kind is rain, snow, sunshine.

Example

import cut_in.sdl

scenario dut.cut_in_and_rain:

do mix():

cut_in()

weather(rain)

timing(afternoon)

4.3. Predefined car actor
The car actor has a predefined scenario drive() as well as various predefined fields and events.
See drive (page 126) for more information on this predefined scenario.

4.4. Predefined car actor fields
You can extend or constrain the fields shown below to match the allowed types of your
simulator. You can also sample these fields and use them in coverage definitions.

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 36

Field name Description

is_dut: bool Constrained by soft constraint to false.

physical:
car_physical

A struct field. See below for full description.

policy: car_poli-
cy

A struct field. See below for full description.

state: car_state A struct field. See below for full description.

category:
car_category

The car_category type is defined as sedan, truck, bus, van, se-
mi_trailer, trailer, four_wheel_drive.

model: string Initially an empty string.

color: car_color The car_color type is defined as white, black, red, green, blue,
yellow, brown, pink, grey.

av_control:
av_control

Constrained by soft constraint to manual

length: distance Car length.

width: distance Car width.

driving_style Relevant only for non DUT cars, the style type is defined as aggres-
sive or normal.

info: list of string This field contains the most recent informational message emitted
by the car actor and passed by the simulator. Note: do not con-
strain this field.

passing_by_info:
pass_by_info

A list of struct fields. See below for full description.

lane_shifts: int s

Constraints set when category == truck

• keep(soft policy.max_speed == 120kph)

• keep(soft physical.max_acceleration == 1.5mpsps)

• keep(soft physical.min_acceleration == -3mpsps)

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 37

• keep(soft length == 15meter)

• keep(soft width == 2meter)

• keep(soft length == 5meter)

• keep(soft width == 180centimeter)

4.4.1. Configuring the car profile

Four struct fields are defined in a car actor to hold various attributes:

• physical

• policy

• passing_by_info

• state

The physical and policy fields hold data related to a car actor’s physical limitations and
normal behavior (its profile). The passing_by_info and state fields hold data related to the
car’s current state, as updated by the simulator.

It is recommended to complete the profile of the DUT. By constraining the attributes of the
physical and policy fields, you specify the expected limitations and behavior of the DUT.

A complete profile improves the planning of scenarios by fitting them to the DUT and saving
extraneous computation time. Messages are issued if the DUT behaves differently than
specified. You can control the level of severity.

You can modify the default constraints for the purpose of a particular scenario or test. You may
also constrain these fields for cars other than the DUT. Constraining the attributes of cars other
than the DUT is of less importance as the fields are set adequately by default.

These struct fields are described in detail below.

4.4.2. Predefined car.physical field

The physical struct field (type: car_physical) of a car actor holds a general description of a
car’s physical limitations. This description is used mainly for checking feasibility and for
kinematic controlling. The fields in this struct, as well as the values set by soft constraint, are
shown in the following table.

An error is issued if any car (either the DUT or an NPC) does not keep the declared physical
limitations. (For example, the car drives at 300kph in simulation.) The severity of the issue is
determined by the physical.severity field. Since this is a soft constraint, you can override it
with a hard constraint.

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 38

Field name Description Soft
constraint

severity: is-
sue_severity

One of ignore, info, warning, error_continue, error
(continue until end of cycle), error_stop_now.

error

min_speed: speed Minimum speed, where negative speed means reverse 0kph

max_speed:
speed

Maximum speed 200kph

min_acceleration:
acceleration

Minimum acceleration, where negative acceleration
means braking

-30mpsps

max_acceleration:
acceleration

Maximum acceleration 10mpsps

power_up_time:
time

The time it takes dut autoware to power up. The value
for all cars will be taken from dut.car.

0second

Constraints on car.physical fields

• keep(soft physical.severity == error)

• keep(soft min_speed == 0kph)

• keep(soft max_speed == 200kph)

• keep(min_speed <= max_speed)

• keep(soft min_acceleration == -30mpsps)

• keep(soft max_acceleration == 10mpsps)

• keep(min_acceleration <= max_acceleration)

• keep(soft power_up_time == 0second)

4.4.3. Predefined car.policy field

The policy struct field (type: car_policy) of a car actor holds a general description of a car’s
behavior in normal circumstances. This description is used mainly for planning scenarios.
There is no need to constrain all the fields, but better results are possible if the policy is at least
partially described. The fields in this struct are shown in the following table.

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 39

An error or warning is issued if the car does not keep the declared policy limitations. (For
example, the car can brake at 10mpsps, but by policy it does not brake at more than 4mpsps.)
By default this field is set to error only for autonomous cars such as the DUT and cars in
car_group. It is a warning otherwise. Since these are soft constraints, you can override them
with hard constraints.

Field name Description Soft constraint

severity: issue_severity One of ignore, info,
warning, error_con-
tinue, error (continue
until end of cycle), er-
ror_stop_now.

error for DUT and cars in
car_group; otherwise, warn-
ing

min_speed: speed Minimum speed,
where negative speed
means reverse

0kph

max_speed: speed Maximum speed 150kph

max_legal_speed_percent: uint Maximum speed as
percentage of the
road legal speed

100

arrival_speed: speed Speed at goal posi-
tion

Not less than min_speed and
not greater than max_speed

min_acceleration: acceleration Minimum accelera-
tion, where negative
acceleration means
braking

-4mpsps

max_acceleration: acceleration Maximum accelera-
tion

2mpsps

average_acceleration_to_cruise:
acceleration

Average acceleration
until cruise speed for
autonomous dut

max_acceleration * 3 / 4

unplanned_standing_time: time How long may the car
stand unplanned in
the middle of the road

100millisecond

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 40

Field name Description Soft constraint

too_close_TTC: time When to emit
too_close warning

0millisecond

max_jerk: jerk Define for reasons of
comfort

MAX_INT*1nm_per_ms_cubed

may_jitter: bool Define for reasons of
comfort

For DUT, false

may_exceed_legal_speed: bool Define for reasons of
comfort

For DUT, false

Constraints on car.policy fields

• keep(soft (av_control == autonomous) => policy.severity == error)

• keep(soft (av_control != autonomous) => policy.severity == info)

• keep(soft min_speed == 0kph)

• keep(soft max_speed == 150kph)

• keep(soft max_legal_speed_percent == 100)

• keep(arrival_speed >= min_speed and arrival_speed <= max_speed)

• keep(soft min_acceleration == -4mpsps)

• keep(soft max_acceleration == 2mpsps)

• keep(soft average_acceleration_to_cruise == max_acceleration * 3 / 4)

• keep(soft unplanned_standing_time == 100millisecond)

• keep(soft too_close_TTC == 0millisecond)

• keep(soft max_jerk == MAX_INT*1nm_per_ms_cubed)

• keep(soft is_dut => may_jitter == false)

• keep(soft is_dut => may_exceed_legal_speed == false)

4.4.4. Predefined physical and policy constraints

The following constraints are defined for a car actor’s physical and policy attributes:

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 41

keep(policy.max_speed <= physical.max_speed)

keep(policy.min_speed >= physical.min_speed)

keep(policy.max_acceleration <= physical.max_acceleration)

keep(policy.min_acceleration >= physical.min_acceleration)

4.4.5. Predefined car.passing_by_info field

The passing_by_info struct field of a car actor holds data received from the simulator,
reflecting the relative position of nearby car actors. The fields in this struct are shown in the
following table.

Note: do not directly constrain these fields because they carry information forwarded by the
simulator.

Field name Description

other_car: car Identifies the other car near by

time_to_passing_by:
time

How long until cars pass each other; when 0, the cars are pass-
ing

lateral_distance: dis-
tance

Lateral distance between cars

4.4.6. Predefined car.state field

The state struct field of a car actor holds data received from the simulator, reflecting the
current state of a car actor. The fields in this struct are shown in the following table.

Note: do not directly constrain these fields because they carry information forwarded by the
simulator.

Field name Description

speed speed Current car speed

acceleration: acceleration Current car acceleration

jerk: jerk Current car jerk

road_position: road_position Current road position in road coordinates

road_speed: road_speed Current road speed in road coordinates

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 42

Field name Description

road_acceleration: road_acceleration Current road acceleration in road coordinates

global_position: global_position Current position in global coordinates

global_speed: global_speed Current speed in global coordinates

location: location

max_acceleration_until_now: acceleration Max acceleration

max_break_until_now: acceleration Max brake applied

max_lateral_speed: speed Max traced lateral speed

avg_lateral_speed: speed Average traced lateral speed

lateral_speed_calc_count: int

4.4.7. Predefined car events

event collision(other_car : car) # car collision with another car

event lane_shift(agent: car, from: location, to: location, start_time: time)

event car_passing_by(info : pass_by_info)

4.4.8. Predefined car external methods

• time_to_passing_by_dut(time : time): bool

• create_location():location

• trace_lateral_speed()

• on_created(desc: av_actor_description)

• get_passing_by_info(other_car: car): pass_by_info

• get_min_speed(): speed

• get_max_speed(): speed

• get_max_legal_speed_percent(): uint

• get_arrival_speed(): speed

• get_min_acceleration(): acceleration

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 43

• get_max_acceleration(): acceleration

• get_average_acceleration_to_cruise(): acceleration

• get_unplanned_standing_time(): int

• get_max_jerk(): jerk

• get_may_jitter(): bool

• get_may_exceed_legal_speed(): bool

4.5. Predefined AV enumerated types

Type name Values

av_at_kind start, end, all

av_car_side front, front_left, left, back, left, back, back_right, right, front_right, other

av_control manual, autonomous

av_gen_mode hard_mode, soft_mode, gen_only

av_side right, left

car_category sedan, truck, bus, van, semi_trailer, trailer, four_wheel_drive

car_color white, black, red, green, blue, yellow, brown, pink, grey

curvature other, straightish ([-1e-6..1e-6]), soft_left ([1e-6..1e-12]), hard_left
([1e-12..1e-18]), soft_right ([-1e-12..-1e-6]), hard_right ([-1e-18..-1e-12])

direction other, straight [-20..20] degrees, rightish [20..70] degrees, right [70..110]
degrees, back_right [110..160] degrees, backwards [160..200] degrees,
back_left [200..250] degrees, left [250..290] degrees, leftish [290..340] de-
grees

driving_style aggressive, normal

lane_use none, car, pedestrian, cyclist

lane_type none, driving, stop, shoulder, biking, sidewalk, border, restricted, parking,
median, road_works, tram, entry, exit, offRamp, onRamp, rail, bidirection-
al

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 44

Type name Values

line left (Left side of the car), right (Right side of the car), center (Center of the
car)

road_condition paved, gravel, dirt

road_type unknown, highway, highway_entry, highway_exit, highway_entry_exit

sign_type speed_limit, stop_sign, yield, roundabout

time_of_day undefined_time_of_day, sunrise, morning, noon, afternoon, sunset,
evening, night, midnight

weather_type undefined_weather, clear, cloudy, foggy, light_rain, rain, heavy_rain,
light_snow, snow, heavy_snow

Predefined AV types PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 45

5. Inheritance
Summary: This topic explains how to use extension, unconditional inheritance
and conditional inheritance

5.1. Introduction
M-SDL defines four extensible types subject to inheritance:

• Enumerated types

• Structs

• Actors

• Scenarios / Modifiers

There are four different inheritance-related mechanisms that you can apply:

• Extension

• Unconditional inheritance

• Conditional inheritance

• The in modifier

The applicability of these mechanisms to the various extensible classes are summarized in the
following table.

Extensible type Extension Unconditional
inheritance

Conditional
inheritance

in
modifier

Enumerated
type

yes no no no

Struct yes yes yes no

Actor yes yes yes no

Scenario / mod-
ifier

yes no yes yes

Inheritance PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 46

5.2. Extension
Extending a type allows you to add features to a type while retaining its name. All instances of
a type are endowed with the union of features declared in all that type’s extensions. Features in
an extension cannot shadow previously declared features, though some features, like function
declarations, allow overrides.

Unlike inheritance (where you define a new type), extension modifies the type being
extended. All instances of the type will get the newly added attributes. For instance, adding a
weight attribute to the car actor adds this attribute to every car in every scenario.

Extending is particularly helpful when somebody else already created a library of inter-related
actors / scenarios, and you want to add some attributes, constraints, scenarios or other
features to accommodate project-specific needs.

Extension, like all other inheritance mechanisms, applies at compile-time. M-SDL is statically
typed, so each object’s type is known and unchanging during execution.

5.3. Unconditional inheritance
M-SDL implements single inheritance between extensible classes. This works like inheritance
in most OO programming languages: a new subtype is declared, endowed with all the features
of the parent type (supertype). Both types are accessible. Modifications to the supertype are
automatically applied to the subtype. Changes to the subtype do not affect the supertype.

Unconditional inheritance is expressed by the following syntax:

struct|actor <type-name>: <supertype-name>:

<members>

Example: In this example, the subtype junction inherits from the supertype road_element.

struct junction: road_element:

...

Inheritance PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 47

5.4. Conditional Inheritance
Conditional inheritance enables the creation of subtypes that depend upon a value of a
Boolean or enumerated field. The condition always sets a single field to a specific value. The
field value (determinant) is a constant literal that is fixed during execution.

Conditional inheritance is specified by declaring the field and value that defines the dynamic
subtype:

struct|actor|scenario|modifier <type-name>: <supertype-name>(<field>: <value>):

<members>

For example, the actor vehicle has the following attributes:

actor vehicle:

category: vehicle_category # truck, car, motorcycle

emergency_vehicle: bool

Assuming the above declaration, you can define:

actor car: vehicle(category: car):

...

actor police_car: car(emergency_vehicle: true):

...

Conditional inheritance has two advantages over unconditional inheritance:

• An object can inherit features from multiple orthogonal conditional types.

• A generateable field can be declared as a type, but be assigned a dynamic subtype by
the generator.

These capabilities are discussed below.

5.4.1. Relations between conditional and unconditional Inheritance

The rule governing the relationship between these two kinds of inheritance is as follows:

Rule 1: A conditional type cannot be inherited unconditionally.

Inheritance PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 48

Inheritance relationships form a tree whose trunk is the predefined M-SDL types. Main limbs
are inherited unconditionally. The final branches of the unconditional inheritance tree can be
the roots of conditionally inherited sub-trees.

5.4.2. Relations between conditional subtypes

Any pair of conditional subtypes (types conditionally inherited from the same supertype) have
one of the following relationships:

• One of the types can be a supertype of the other; or

• Both types have a common supertype. (They are orthogonal.)

5.4.3. Type membership

Consider a field declared as type car. It may be assigned an object whose
emergency_vehicle field is set to true.

Because the field is declared as type car, its value must be an instance of car, and only
features of car are accessible. However, M-SDL allows type-membership checking, using the
is() operator.

Using type checking, you can access features under an active subtype, even though it is not
the declared type. Such active but undeclared subtypes (police_car in this example) are called
latent subtypes. This is summarized by the following two rules:

• Rule 2: The declared type determines an object’s type membership.

• Rule 3: Dynamic type check allows access to latent subtype features.

5.4.4. Preventing type reconvergence

Type reconvergence occurs when two orthogonal subtypes are combined. This means the
resulting type has multiple supertypes. This is not allowed in a single-inheritance scheme.

Consider the following example. In addition to the above vehicle declaration, add the
following:

actor truck: vehicle(category: truck):

...

actor fire_truck: truck(emergency_vehicle: true):

...

It might be possible to declare a type called, for example, first_responder, that includes both
police_car and fire_truck. That hypothetical type would inherit from both, with a determinant
that is a Boolean expression:

Inheritance PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 49

this is not allowed in M-SDL semantics

emergency_vehicle == true and (category == car or category == truck)

M-SDL semantics disallows such complex determinants, in order to prevent type
reconvergence. This is expressed in the following rule:

Rule 4: Each field can occur at most once in a conditional type determinant.

Note that it is possible to type check an object dynamically in order to determine if it’s an
emergency vehicle.

5.4.5. Type checking with the is() operator

Syntax:

<path-to-object>.is(<type-name>)

Example:

if (v.is(truck)):

...

is() returns true if the object is of the specified type, false otherwise. is() can be used in any
context that that accepts a Boolean expression.

5.4.6. Type casting with the as() operator

Syntax:

<path-to-object>.as(<type-name>)

Example:

keep(v.as(truck).num_of_trailers == 0)

as() performs a cast, declaring the type of the object to be the specified type-name. If the
object cannot be of the casted type, an error is raised. (A compile-time error is raised if the
declared type contradicts the cast type; otherwise a contradiction error is raised during
generation / execution).

Inheritance PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 50

5.5. Scenario and modifier inheritance
The rules for scenario and modifier inheritance are the same; “scenario” is used below to refer
to both.

Scenario inheritance rules are compounded because scenarios are features of their actors, but
they are also types by themselves. The inheritance process is described by the following steps:

1. An actor subtype (conditional or unconditional) inherits its supertype scenarios.

2. It then can extend the inherited scenarios, modifying their behavior.

3. It can also declare new scenarios that can inherit conditionally from any of its
scenarios (that is, other scenarios of the type or any of its supertypes).

When extending a scenario, it is possible to extend its behavior by adding a do <scenario
invocation>, which is performed serially. The inherited behavior can be overridden by using do
only <scenario invocation>.

The following examples illustrate some options:

drive scenario defined under car

scenario car.drive:

police_car inherits drive() because it is a conditional subtype of car.

extend police_car.drive:

the scram() scenario conditionally inherits from police_car.drive().

scenario police_car.scram: drive(emergency_lights: on):

5.6. The in modifier
While in is described as a modifier in MSDL, it has properties that affect the type system.

Syntax:

in <path-expression> with:

<members>

Inheritance PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 51

The in path designates a scenario instance to which the members are applied. Some possible
members, like on, cover, synchronize and until are changing the underlying type of the
scenario instance, essentially creating a prototype. (In the JavaScript sense, a prototype is a
subtype that’s specific to an instance).

The following rule applies to the use of the in modifier:

Rule 5: The application of in is static. Although the modifier may appear in some temporal
context (such as the invocation of a scenario), the effect of it is static and global. The affected
scenario instance will be endowed with the in properties throughout its existence.

This is implemented in the type system by creating a latent subtype of the affected scenario
type. That latent subtype will have the in members. The particular instance affected by the in
will be statically typed as the latent subtype.

Inheritance PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 52

6. Statements
Summary: This topic describes M-SDL statements.

6.1. actor

Purpose

Declare an active object with activities (behaviors)

Category

Statement

Syntax

actor <actor-name>[: <base-actor-type>[(<condition>)]] [:

<member>+]

Syntax parameters

<actor-name>

Must be different from any other defined actor, type, or struct name because the namespace
for these constructs is global.

<base-actor-type>

The name of a previously defined actor type. The new type inherits all members of the
previously defined type as well as its associated scenarios.

<condition>

Has the form <field-name>:<value>. This syntax lets you add members to an actor only if the
field has the value specified.

<member>+

Is a list of one or more of the following:

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 53

• field declarations

• keep constraints

• cover definitions

• event declarations

• external method declarations

Each member must be on a separate line and indented consistently from actor.

Description

Like structs, actors are compound data structures that you create to store various types of
related data. In contrast to structs, actors also are associated with scenarios. Thus, an actor is
a collection of both related data and declared activity.

Each actor has by default a scenario called start(). Since this scenario starts automatically at
the beginning of a run, you can activate a scenario or monitor a scenario for coverage by
adding it to any actor’s start() scenario. However, as a general rule, if you want to activate or
monitor a scenario for the purposes of a particular test run, it is recommended that you do so
by extending the main scenario of the top-level actor, top.main().

All actors have a lifetime() scenario that runs throughout the life of an actor instance. You can
extend this scenario to look for events that might occur over the lifetime of an actor. For
example:

extend dut.lifetime:

event near_collision is @dut.too_close =>col

cover(col.data.x, event: near_collision, unit: centimeter)

cover(col.data.y, event: near_collision, unit: centimeter)

cover(col.data.other_car, event: near_collision)

You can use the following extension mechanisms with actors:

• extend

• Unconditional inheritance

• Conditional inheritance

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 54

Example actor declaration

type vehicle_category: [car, truck, motorcycle]

type track_kind: [single_track, multi_track]

actor my_vehicle:

category: vehicle_category

emergency_vehicle: bool

track_kind: track_kind

Example unconditional inheritance

actor my_car : car:

keep(category==four_wheel_drive)

Example conditional inheritance

actor truck: my_vehicle(category: truck):

num_of_trailers: uint with: keep(it in [0..2])

6.2. enumerated type

Purpose

Define a scalar type with named values

Category

Statement

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 55

Syntax

type <type-name> : [<member>*]

Syntax parameters

<type-name>

Must be different from any other defined actor, struct or type name because the namespace
for these constructs is global.

<member>*

Is a comma-separated list, enclosed in square brackets and placed on one or more lines, of
zero or more enumerations in the form:

<enum-name> [=<exp>]

Each <enum-name> must be unique within the type.

<exp> evaluates to a constant value. If no <exp> is specified, the first name in the list is
assigned a value of 0, the next 1 and so on.

Description

You can declare a type without defining any values using the following syntax:

type <type-name> : []

Enumerated types can be extended. You cannot use inheritance, either unconditional or
conditional, with enumerated types.

Example

In this example, the type statements define the types of vehicles in a verification environment
and the driving style.

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 56

type car_type: [sedan = 1, truck = 2, bus = 3]

by default, aggressive = 0, normal = 1

type my_driving_style: [aggressive, normal, timid]

6.3. extend

Purpose

Add to an existing type or subtype of an enumerated type, struct, actor, scenario or modifier

Category

Statement

Syntax

extend <type-name> :

<member>+

Syntax parameters

<type-name>

Is the name of a previously defined enumerated type, struct, actor, scenario or modifier.

<member>+

Is a list of one or more new members of the type.

For enumerated types, the list is comma-separated, enclosed in square brackets, and can be
placed on one line.

For compound types, each member must be placed on a separate line and indented
consistently from extend.

Description

At compile time, extend modifies the type and thus all instances of the type for the test in
which it is included. extend allows you to encapsulate attributes or behaviors as an aspect of
an object. It also allows you to modify built-in actors, structs and scenarios.

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 57

Example extend enumerated type

Because two values are already defined for this type (aggressive=0, normal=1), erratic has the
value of 2, unless explicitly assigned a different value.

extend driving_style: [erratic]

Example extend struct

This example extends the struct named storm_data with a field for wind velocity. This
extension applies to all instances of storm_data.

import storm_data.sdl

extend storm_data:

!wind_velocity: speed

Example extend scenario

When car.bar is extended, the scenario instances are performed in sequence: f1, f2, f3.

scenario car.foo:

x: int with:

keep(default it == 0)

y: int with:

keep(it != x)

scenario car.bar:

do serial():

f1: foo(x: 5)

f2: foo(x: 3)

extend car.bar:

do f3: foo(y: 10)

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 58

Example extend modifier

In the following example, the modifier map.path_curve_with_sign() is extended to include a
third path modifier, path_length(). Below is the original modifier declaration:

modifier map.path_curve_with_sign:

path1: path

max_radius: distance

min_radius: distance

side1: av_side

sign1: sign_type

path_curve(path1, max_radius, min_radius, side: side1)

path_has_sign(path1, sign1)

Now here is the extension:

extend map.path_curve_with_sign:

num_of_lanes: int

path_min_driving_lanes(path1, num_of_lanes)

6.4. import

Purpose

Load an M-SDL file into the M-SDL environment.

Category

Statement

Syntax

import <path-name>

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 59

Syntax parameters

<path-name>

Is the relative or full (global) path, including the file name, of the file to import. It may contain
environment variables, preceded by ‘$’. The default file extension is .sdl. Wildcards are not
allowed.

Description

If you have built a scenario hierarchically, with a higher level scenario calling a lower-level one,
and the coverage definitions in a separate file, you can use import statements to import all
these files into a test file.

Imports must come before any other statements in an SDL file. The order of imports is
important, as a type must be defined before it is referenced.

If a specified file has already been loaded, the statement is ignored. For files not already
loaded, the search sequence is:

These are the search rules for import:

1. If a full path is specified (for example, /x/y/my_file), then use that full path. The file
name as specified is looked up first, and if not found, the name with the extension .sdl
is attempted.

2. Else look in the directory where the importing file resides.

3. Else look in the current directory.

4. Else look in directories specified by the SDL_PATH environment variable.

5. Else this is an error.

Example

This example shows the import statements from a typical test. The first import line is the
simulator configuration file, and the second loads cut_in_and_slow_top.sdl, the top-level SDL
source file for the test.

import sumo_config

import cut_in_and_slow_top

The cut_in_and_slow_top.sdl file in turn has the following import statements:

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 60

import cut_in_and_slow

import cut_in_and_slow_cover

6.5. modifier

Purpose

Declare a modifier for scenarios

Category

Statement

Syntax

modifier <name>[:

<member>+]

Syntax parameters

<name>

Is in the form <actor-name>.<modifier-name>. The <modifier-name> must be unique among
that actor’s scenarios and scenario modifiers, but it can be the same as the scenario or
scenario modifier of a different actor.

<member>+

Is a list of one or more of the following:

• Field declarations

• keep constraints

• event declarations

• External method declarations

• Scenario modifier invocations

Each member must be on a separate line and indented consistently from modifier.

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 61

Description

Scenario modifiers constrain or modify the behavior of a scenario; they do not define the
primary behavior of a scenario. Modifiers can be extended.

Scenario modifiers cannot include scenario invocations or do.

You can use the following extension mechanisms with modifiers:

• extend

• Conditional inheritance

• the in modifier

Note: Unconditional inheritance is not allowed for modifiers.

Example 1

modifier car.speed_and_lane:

s: speed

l: lane_type

speed(speed: s)

lane(lane: 1)

Example 2

modifier map.curving_multi_lane_highway:

p: path

lanes: uint

keep(lanes > 2)

path_min_driving_lanes(path: p, min_driving_lanes: lanes)

path_curve(path: p, max_radius:11m, min_radius:6m, side: left)

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 62

6.6. scenario

Purpose

Declare an ordered set of behaviors by an actor

Category

Statement

Syntax

scenario <name>[: <base-scenario-type>(<condition>)] [:

<member>+]

Syntax parameters

<name>

Is in the form <actor-name>.<scenario-name>. The scenario name must be unique among that
actor’s scenarios, but it can be the same as the scenario of a different actor. Parentheses are
not allowed in scenario declarations.

<base-scenario-type>

Is the name of a scenario previously defined with <actor-name>. The new type inherits the
behavior of the previously defined type.

<condition>

Has the form <field-name>:<value>. This syntax lets you modify the behavior of the scenario
only if the field has the value specified.

Note: Unconditional inheritance is not allowed for scenarios.

<member>+

Is a list of one or more of the following:

• field declarations

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 63

• keep constraints

• cover definitions

• event declarations

• external method declarations

• scenario modifiers

A do member that describes the behavior of the scenario is required.

Each member must be on a separate line and indented consistently from scenario.

Note: Every scenario has a predefined duration field of type time.

Description

To define the behavior of a scenario, you must use the do member to invoke an operator
scenario, such as serial, a library scenario, such as car1.drive(), or a user-defined scenario.

You can control the behavior of a scenario and collect data about its execution by declaring
data fields and other members in the scenario itself, in its related actor or structs, or in the test
file. For example, the car actor has a field of type speed that allows you to use the speed()
scenario modifier to control the speed of a car.

When you declare or extend a scenario, you must associate it with a specific actor by prefixing
the scenario name with the actor name in the form actor-name.scenario-name.

Note: Invoking the generic form of the scenario (actor.scenario) is not allowed.

You can use the following extension mechanisms with scenarios:

• extend

• Conditional inheritance

• the in modifier

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 64

Example scenario declaration

A two-phase scenario

scenario traffic.two_phases: # Scenario name

Define the cars with specific attributes

car1: car with:

keep(it.color == green)

keep(it.category == truck)

path: path # a route from the map; specify map in the test

Define the behavior

do serial:

phase1: car1.drive(path: path) with:

speed(speed: 0kph, at: start)

speed(speed: 10kph, at: end)

phase2: car1.drive(path: path) with:

speed(speed: [10..15]kph)

Example scenario inheritance

type vehicle_category: [car, truck, motorcycle]

type emergency_vehicle_kind: [fire, police, ambulance]

type light_kind: [parking, low_beam, high_beam, emergency]

actor vehicle:

category: vehicle_category

emergency_vehicle: bool

actor emergency_vehicle: vehicle(emergency_vehicle:true):

vehicle_kind: emergency_vehicle_kind

scenario vehicle.drive:

lights: light_kind

scenario emergency_vehicle.drive_emergency: drive(lights: emergency)

siren: bool with: keep(it == true)

See Example scenarios (page 8) for more examples of how to create and reuse scenarios.

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 65

6.7. struct

Purpose

Define a compound data structure

Category

Statement

Syntax

struct <type-name>[: <base-struct-type>[(<condition>)]] [:

<member>+]

Syntax parameters

<type-name>

Must be different from any other defined type, struct, or actor name because the namespace
for these constructs is global.

<base-struct-type>

Is the name of a previously defined struct. The new type inherits all members of the previously
defined type.

<condition>

Has the form <field-name>:<value>. This syntax lets you add members to a struct only if the
field has the value specified.

<member>+

Is a list of one or more of the following:

• field declarations

• keep constraints

• cover definitions

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 66

• event declarations

• external method declarations

Each member must be on a separate line and indented consistently from struct.

Description

Structs are compound data structures that you can create to store related data of various
types. For example, the AV library has a struct called car_collision that stores data about the
vehicles involved in a collision.

You can use the following extension mechanisms with actors:

• extend

• Unconditional inheritance

• Conditional inheritance

Example struct declaration

This example defines a struct named my_car_status with do-not-generate fields called time
and current_speed.

struct my_car_status:

!time: time

!current_speed: speed

Example struct unconditional inheritance

This example creates a new struct type my_collision_data from the base type collision_data
and adds a field to store the type of the other car involved in the collision.

struct my_collision_data: collision_data:

!other_car_category: car_category

Example struct conditional inheritance

This example creates a new struct type snow_storm_data from the base type storm_data
and adds a field for snow_depth.

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 67

type storm_type: [rain, ice, snow]

struct storm_data:

storm: storm_type

wind: speed

struct snow_storm_data: storm_data(storm: snow):

snow_depth: distance

Statements PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 68

7. Struct, actor or scenario members
Summary: This topic describes members that can be defined within structs,
actors or scenarios.

7.1. Coverage and Performance Metrics
Metrics collected during test execution are used to answer two critical questions: how well was
the DUT (Device Under Test) tested, and how well did the DUT perform within these tests. The
first question is answered by the coverage grade, the multi-dimensional representation of all
situations encountered during testing. The second question is answered by performance
grade, the collection of Key Performance Indicators, normalized within their context.

Together, these metrics provide insight to the following questions

Coverage:

• What is the current coverage grade (overall and specifically for a given scenario)?

• What are the main coverage holes for a scenario? How do they cluster, in other words,
are there big uncovered areas?

Performance:

• What were the values for a specific KPI (overall and specifically for a given scenario)?
Do those cluster in some interesting way?

• How well does the DUT perform on specific KPI grades (overall and for a scenario)?
Where is this worse / better than the previous SW release?

• How may runs actually failed with a DUT error, in other words, with a grade below the
threshold? How do they cluster?

• What is the trend in all of these relative to the previous week? Which metrics improved
and which degraded?

Both coverage and performance metrics defined in M-SDL typically implement a verification
plan, specifying goals and thresholds. The verification plan is a result of an engineering effort
driven by requirements such as AV performance, ODD, safety standards and so on.

7.1.1. cover()

Purpose

Define a coverage data collection point.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 69

Category

Struct, actor, or scenario member

Note: cover() is also allowed in the with block of field declarations.

Syntax

cover(<exp> [, <param>*])

Syntax parameters

<exp>

Is an expression using objects in the enclosing construct. The expression must be of scalar
type. The value of the cover item is the value of the expression when the cover group event
occurs.

<param>*

See cover() and record() parameters (page 74) below.

Description

Coverage is a mechanism for sampling key parameters related to scenario execution.
Analyzing aggregate coverage helps determine how safely the AV behaved and what level of
confidence you can assign to the results.

For example, to determine the conditions under which a cut_in_and_slow_down scenario
failed or succeeded, you might need to measure:

• The speed of the dut.car

• The relative speed of the passing car

• The distance between the two cars

You can specify when to sample these items. For example, the key events for this scenario are
the start and end events of the change_lane phase.

Cover items that have the same sampling event are aggregated into a single metric group,
along with record data sampled by the same event. The default event for collection coverage
is end.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 70

If the range of data that you want to collect is large, you might want to slice that range into
subranges or buckets. For example, if you expect the dut car to travel at a speed between 10
kph and 130 kph, specifying a bucket size of 10 gives you 12 buckets, with 10 kph – 19 kph as
the first bucket.

You can also specify an explanatory line of text to display about the cover item during
coverage analysis.

This example defines a line of display text, a unit of measurement, a range and a range slice for
the field speed:

cover(speed1, unit: kph,

text: "Absolute speed of ego at change_lane start (in km/h)",

range: [10..130], every: 10)

You can declare a field and define coverage for it at the same time. The following examples are
equivalent.

Example 1

current_speed: speed with:

cover(it, unit: kph)

Example 2

current_speed: speed

cover(current_speed, unit: kph)

Example field and cover declaration

The following example extends the dut.cut_in_and_slow scenario to add a do-not-generate
field called rel_d_slow_end. It assigns that variable the value returned by the
map.abs_distance_between_locations() method at the end event of the slow phase of the
scenario. It then defines coverage for that field, including a unit, display text and so on.

extend dut.cut_in_and_slow:

!rel_d_slow_end:= sample(map.abs_distance_between_locations(

dut.car.state.location, car1.state.location), @slow.end) with:

cover(it, text: "car1 position relative to dut at slow end (in centimeter)",

unit: centimeter, range: [0..6000], every: 50,

ignore: (rel_d_slow_end < 0cm or rel_d_slow_end > 6000cm))

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 71

Cross coverage: combining coverage from different items

You can combine the coverage of two or more items by specifying the items as a list. This
coverage, sometimes called cross coverage, creates a Cartesian product of the two cover
vectors, showing every combination of values of the first and second items, every combination
of the third item and the first item, and so on.

Example 1

The following example creates a Cartesian product of three cover vectors at the start of the
change_lane phase of a scenario: the relative distance between two cars, the absolute velocity
of the DUT vehicle, and the relative speed of the other vehicle.

cover([rel_d_cls, dut_v_cls,rel_v_cls], event: change_lane_start,

text: "Cross coverage of relative distance and absolute velocity")

Example 2

You can only cross cover items that have the same sampling event. To overcome this
limitation, define a secondary cover point with the common sampling event. For example, if
you want to include a field car1.speed in a cross with other items that are sampled at the start
of a scenario, you have to define a second field with that sampling event and cover the second
field. The reason is that the default sampling event for car1.speed is end, not start.

!speed1:= sample(car1.state.speed, @start) with:

cover(it, unit:kph)

7.1.2. record()

Purpose

Define a performance metrics and other data collection point. Any scalar or string value can be
captured by record().

Category

Struct, actor, or scenario member

Note: record() is also allowed in the with block of field declarations.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 72

Syntax

record(<exp> [, <param>*])

Syntax parameters

<exp>

Is an expression using objects in the enclosing construct. The expression must be of scalar or
string type. The value of the record metric is the value of the expression when the record group
event occurs.

<param>*

See cover() and record() parameters (page 74) below.

Description

record() is used to capture performance indicators and other data items that are not part of the
coverage model, like the name and version strings identifying the DUT.

The purpose of performance evaluation is to see how well the AV performed in specific
conditions as they occur within a test. Performance is evaluated along multiple dimensions, like
safety, ride comfort and so on.

Performance metrics can provide pass/fail indication: sampled values that cross a specified
threshold will raise an error message, indicating that the DUT (Device Under Test) performance
was outside the acceptable range.

KPIs or Key Performance Indicators are the raw metrics measured to see how well the AV
performed. There can be safety-related KPIs (such as min-Time-To-Collision or min-TTC,
measured in seconds), comfort-related KPIs (such as max-deceleration, measured in meter/
second2), and so on.

Often, raw KPI values need to be interpreted in the context of a specific scenario. For example,
it may be acceptable to cross the max-deceleration threshold if emergency braking is required.
For this purpose, raw KPIs are converted to performance grades. A performance grade (also
called a normalized KPI) is a context-dependent number between 0 (“really bad”) and 1
(“excellent”) that is attributed to some aspect of the DUT behavior. This grade is computed
using a user-defined grading formula, which converts one or more raw KPIs into a grade in a
context-dependent way.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 73

Example 1

The following example shows record() used to capture time-to-collision into the metric group
associated with the end of a change-lane maneuver.

extend dut.cut_in_and_slow:

Sample the time-to-collision KPI at the end of change_lane

!ttc_at_end_of_change_lane:= sample(dut.car.get_ttc_to(car1), @change_lane.end)

Record the KPIs into the cut_in_and_slow.end metric group

record(ttc_at_end_of_change_lane,

unit:s,

text: "Time to collision of ego car to cut-in car " +

"at end of the change_lane phase")

Cross record - Combining metrics

You can combine record and coverage metrics of two or more previously defined items, by
specifying the items as a list. This creates a Cartesian product of the specified metrics,
showing every combination of values of the items. Only items that belong to the same metrics
group (same sample event) can be crossed.

Example 2

The following example creates a cross record: a Cartesian product of the time-to-collision
record item and the DUT velocity cover item, both sampled at the start of the change_lane
phase. This is considered a cross-record because it includes at least one record item.

record([ttc_at_end_of_change_lane, dut_v_cls], event: start,

text: "Cross record of TTC and absolute DUT velocity")

7.1.3. cover() and record() parameters

Cover and record members accept a comma-separated list of zero or more of the following:

• name: <name> specifies a name for the cover or record item. By default, <name> is
the same as <exp>, with any sequence of non-alphanumerics replaced by an
underscore.

For example, if you specify cover(speed1 - speed2), the default name for this item is
speed1_speed2. Note that the operator and surrounding white space was replaced by
an underscore. You can change this default name using the name parameter, for
example cover(speed1 - speed2, name: speed_difference).

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 74

• unit: <unit> specifies a unit for a physical quantity such as time, distance, speed. The
field’s value is converted into the specified unit, and that value is used as the coverage
value.

Notes:

◦ You must specify a unit for cover items that have a physical type.

◦ If the cover or record item(s) are not members of the end metric group, a
sampling event must be specified.

• range: <range> specifies a range of values for the physical quantity in the unit
specified with unit.

• every: <value> specifies when to slice the range into subranges. If the range is large,
for example [0..200], you might want to slice that range into subranges every 10 or 20
units.

• event: <event-name> specifies the event when the field is sampled. The default is the
end event of the scenario. Items that have the same sampling event are aggregated
into a metric group. Note that both coverage and performance items can be collected
in the same metric group.

◦ You can sample a field value on one event and cover it on another. This way
you can, for example, capture the speed of a car when changing lanes, but
associate the cover item with the scenario end metric group.

◦ The cover event must be local (an event defined in the enclosing struct/actor/
scenario). No dotted path expressions are allowed. If necessary, you can
define a local event to be derived from some path expression and use that for
coverage, for example:

event change_lane_start is @change_lane.start

• text: <string> is explanatory text, enclosed in double quotes, about this metric point.

• ignore: <item-bool-exp> defines values that are to be completely ignored. The
expression is a Boolean expression that can contain only the item name and
constants. If the ignore expression is true when the data is sampled, the sampled
value is ignored (not added to the bucket count).

• disable: <bool> must be either the literal true or false. true completely disables a
metric group. This parameter is used with override (see below), to disable an existing
metric item. (Default : false).

• buckets: <list of bucket boundaries>. Provides a way to declare different-sized
buckets, by specifying bucket boundaries. A list of N values defines N-1 buckets. Each
value must be >= the previous one, else this is an error. For example:

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 75

cover(speed, unit: kph, buckets: [1, 2, 6.5, 10])

Will create the following buckets

1..2, 2..6.5, 6.5..10

This option replaces both every and range, if specified.

7.1.4. override

The override option is used to override some parameter in an already defined cover() or
record() member.

Syntax

cover | record(override:<name> [, <param>*])

Description

The override feature works as follows:

• override must be the first parameter in a cover() or record() modifier.

• <name> must be the name of an existing cover or record item in the event metric
group.

• Any other specified parameter in the <param> list overrides the corresponding original
parameter. Parameters not provided in the override retain their original values. (If no
event parameter is specified, the default event: end is used.)

• Multiple overrides are allowed. The last value provided for each parameter prevails.

• This automatically percolates to any cross coverage using this item.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 76

Example

Original definition

cover(speed_diff, units: kph, range: [1..20], every: 5)

New definition overrides the every: 5 and adds ignor

e

cover(override: speed_diff, every: 4, ignore: speed_diff in [10..13]kph):

Restrictions

• The name of the item cannot be changed. If the original item’s <name> parameter was
not specified then the item name is automatically generated. For example, x.y
becomes x_y. This is the name you need to use with override: <name>.

• override:<exp> is not allowed. You cannot override the expression as originally
defined.

• Override can only be used in the same type where the cover or record modifier was
originally defined. It cannot be used to override a cover or record modifier in a
subtype.

7.2. event

Purpose

Signify a point in time.

Category

Struct, actor, or scenario member

Syntax

event <event-name> [(<param>+)] [is <qualified-event>]

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 77

Syntax parameters

<event-name>

Is a name unique in the enclosing construct.

<param>+

Is a comma-separated list of one or more fields in the form <field-name>:<type-name>.

<qualified-event>

Has the format:

[<bool-exp>][@<event-path> [=> <name>]]

If <event-path> is missing, the basic clock is used. If <bool-exp> is missing, true is assumed.
At least one of <event-path> and <bool-exp> must be specified.

If specified, the => <name> clause creates a pseudo-variable (an event object variable) with
that name in the current scope, the current scenario for example. This notation is allowed only
for events with parameters. You can use this variable to access the values of the event
parameters, possibly collecting coverage over their values.

Description

Events are transient objects that represent a point in time and can trigger actions defined in
scenarios. You can define an event within a struct, but more typically within an actor or
scenario.

Scenarios can emit events. Events are used to:

• Cause scenarios waiting for that event to proceed.

• Assign a sampled value to a field when that event occurs.

• Collect coverage data when that event occurs.

The events start, end and fail are defined for every scenario type. They are emitted whenever
a scenario instance starts, ends or fails. In scenarios that invoke other scenarios, each phase
may emit its own start, end and fail. When a scenario fails, the fail event is emitted, and the
scenario terminates without emitting its end event or collecting coverage.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 78

An event declaration can include an event expression (using “is”). Event expressions have two
parts:

• A Boolean expression.

• An event path (a path expression that evaluates to another event in the program tree).

The event is emitted if the Boolean expression is true when the event specified by the event
path occurs. If no event path is specified, the basic clock is used. If no Boolean expression is
specified, the default is true.

You can declare events without an event expression. However, the event does not occur
unless it is raised by an emit action. For example the arrived event declared here must be
emitted explicitly:

event arrived

If you define an event with an event path leading to another event but no Boolean expression,
the event occurs when the event specified by the path occurs. This type of event is called a
bound event. In this example, car_arrived occurs when the arrived event in main_car occurs.

event arrived is @main_car.arrived

If you define an event with a Boolean expression but no event path, the basic clock is used.
The following event occurs when snow_depth is greater than 15 centimeters arrives at the
specified location.

event deep_snow is (snow_depth > 15cm)

Events can have parameters. Event parameters are accessible by referencing the pseudo-
variable declared by => <name>, in the scope of the enclosing object. For example, an event
near_collision with parameters is defined in the dut actor with two parameters, other_car and
distance:

extend dut:

event near_collision(other_car: car, dist: distance)

This event can be emitted by the on modifier, which is looking for near collisions:

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 79

scenario dut.scenario1:

car2: car

path1: path

distance1: distance

on (map.abs_distance_between_locations(dut.car.location,

car2.location) < 2m):

emit dut.near_collision(other_car: car2, distance: distance1)

do serial:

car2.drive(path1)

In the lifetime scenario of the dut, the local near_collision is bound to the actor’s
near_collision event and creates a pseudo variable col to facilitate coverage collection:

extend dut.lifetime:

event near_collision is @dut.too_close =>col

cover(col.data.x, event: near_collision, unit: centimeter)

cover(col.data.y, event: near_collision, unit: centimeter)

cover(col.data.other_car, event: near_collision)

7.3. external method declaration

Purpose

Declare a procedure written in a foreign language

Category

Struct, actor, or scenario member

Syntax

def <msdl-method-name> (<param>*) [: <return-type>] [is empty | is undefined | is [fi

rst|only|also]<bind-exp>]

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 80

Syntax parameters

<msdl-method-name>

Is a name that is unique in the current M-SDL context.

<param>*

Is a list composed of zero or more arguments separated by commas of the form

<param-name>: <param-type> [= <default-exp>]

The parentheses are required even if the parameter list is empty.

<return-type>

Specifies the type of the return parameter.

<bind-exp>

Is in the form:

external.[e | python | cpp | shell] (<param>*)

where <param> is a language-specific list of parameters.

external.cpp allows you to declare methods implemented in C++. The bind expression has the
following syntax:

external.cpp([<c++-method-name>,]<shared-object-name>)

<c++-method-name> specifies the name for the C++ method. The name must be unique within
the current context. When not set, the C++ method name is the same as <msdl-method-
name>.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 81

<shared-object-name> specifies the shared object that contains the implementation of the C++
method. The name should include only the file name; the full library path is detected according
to the operation system conventions. For example, in Linux, libraries are searched for in paths
defined by the environment variable LD_LIBRARY_PATH.

Description

The following declare but do not define an external method:

• is empty

• is undefined

Both empty and undefined let you declare a method without specifying any actions. If an
empty and undefined method is called:

• empty returns the default type value, if defined.

• undefined causes a runtime error.

The following specify an extension to a previously declared method:

• is also appends the specified method to the previously declared method(s).

• is first prepends the specified method to the previously declared method(s).

• is only replaces the previously declared method(s) with the specified method.

You can call external methods using the call zero-time scenario. If a method returns a value,
you can use it in any place where an expression can be used, such as in constraint
expressions, in qualified event expressions, in coverage computations and so on.

When called, these methods execute immediately in zero simulated time.

In addition, each foreign language includes an interface for invoking M-SDL methods.

Example

extend car:

def calculate_dist_to_other_car(other_car: car) is external.cpp("calculate_dist_t

o_other_car", "libexample.so")

extend top.main:

on @c.slow.start:

call dut.car.calculate_dist_to_other_car(c.car1)

set_map(name: "$FTX_QA/odr_maps/hooder.xodr")

do c: cut_in_and_slow()

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 82

7.4. field

Purpose

Declare a field to contain data

Category

Struct, actor, or scenario member

Syntax

[!]<field-name>: [<type>][= <sample>][<with-block>]

Syntax parameters

!

The do-not-generate operator (!) specifies that no value should be generated for this field
before the run executes. Instead, a value is assigned during the run.

<field-name>

Is a unique name within the enclosing struct, actor or scenario.

<type>

Is required unless <sample> is present. <type> is any data type or a list of any of these. Use
list of <type> for lists.

When <sample> is specified, <type> can be omitted if the type can be derived from the type of
the sampling expression.

<sample>

Is in the form:

sample(<exp>, <qualified-event>)

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 83

where <exp> is an expression that evaluates to the field whose value you want to sample and
<qualified-event> is in the form:

[<bool-exp>][@<event-path> [=> <name>]]

If <bool-exp> is missing, true is assumed. If <event-path> is missing, the basic clock is used.
At least one of <event-path> and <bool-exp> must be specified.

If specified, the => <name> clause creates a pseudo-variable (an event object variable) with
that name in the current scope, the current scenario for example. This notation is allowed only
for events with parameters. You can use this variable to access the values of the event
parameters, possibly collecting coverage over their values.

<with-block>

Is in the form:

with:

<member>+

or

with: <member1> [; <member2>;...]

<member> is either:

• A coverage definition in the form cover it, where it is a scalar field, or cover [it.]<field-
name>, where it is a struct or actor field and <field-name> is the field that you want to
cover.

• A constraint in the form

keep(<constraint-type> <constraint-exp>)

where <constraint-type> is either soft or default. default is allowed only for fields
declared within scenarios.

Within the constraint expression, use the implicit variable it to refer to the field if it is
scalar, or [it.]<field-name> if it is a struct or actor field and <field-name> is the field
that you want to constrain.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 84

Note: If the field you are declaring is of type struct or actor, and you want to constrain one or
more of its fields to a single value or range of values, you can pass the fields as parameters
using the following syntax:

with(<field-name>: [<constraint-type>] <value>, ...)

For example:

field1: some_struct with(x: default 1m, y:2):

cover it.x

cover it.y

Is the same as:

field1: some_struct with:

keep(default x == 1m)

keep(y == 2)

cover it.x

cover it.y

Example scalar field declarations

The following example shows an actor with two fields of type speed. The first field is named
current_speed and holds a value specifying the current speed. The name speed is preceded
by the do-not-generate operator, which prevents it from receiving a value during pre-run
generation. Most likely it is assigned various values while a scenario is running. The second
field is named max_speed and it has a soft constraint. It receives a value during pre-run
generation of 120 kph, unless it is constrained or assigned otherwise.

actor my_car:

Current car speed

!current_speed: speed

Car max_speed

max_speed: speed with:

keep(soft it == 120kph)

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 85

Example list field

extend traffic:

my_cars: list of car

Example list field with constraints

actor my_car_convoy:

first_car: car

cars: list of car

the list will have between 2 and 10 items

the first item is first_car

keep(soft cars.size() <= 10)

keep(soft cars.size() >= 2)

keep(cars[0] == first_car) # list indexing

Example string field

The default value of a field of type string is null. This is equivalent to an empty string,“”.

struct data:

name: string with:

keep(it == "John Smith")

Example actor or struct field declarations

The following example shows a field of type my_car with the name car1 instantiated in the
traffic actor. The constraint on car1’s max_speed field overrides the earlier soft constraint on
the same field.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 86

extend traffic:

car1: my_car with:

keep(it.max_speed == 60kph)

Example scenario field

This example shows a struct field storm_data instantiated in a scenario called
env.snowstorm. Constraints are set on storm_data’s two fields, and the wind_velocity field is
monitored for coverage.

type storm_type: [rain, ice, snow]

struct storm_data:

storm: storm_type

wind_velocity: speed

scenario env.snowstorm:

storm_data: storm_data with:

keep(it.storm == snow)

keep(soft it.wind_velocity >= 30kph)

cover(it.wind_velocity, unit: kph)

Example sampling

This code samples the value of car1.speed at the end event of the get_ahead phase of the
cut_in scenario.

extend dut.cut_in:

!speed_car1_get_ahead_end := sample(car1.state.speed, @get_ahead.end) with:

cover(it, text: "Speed of car1 at get_ahead end (in kph)", unit: kph,

range: [10..130], every: 10)

7.5. keep()

Purpose

Define a constraint

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 87

Category

Struct, actor, or scenario member

Note: keep() is also allowed in the with block of field declarations.

Syntax

keep([<constraint-type>] <constraint-boolean-exp>)

Syntax parameters

<constraint-type>

Is either soft or default. default is allowed only in scenario fields. If neither soft nor default is
specified, the constraint type is hard. See below for a description of these constraint types.

<constraint-boolean-exp>

Is a simple or compound Boolean expression that returns either true or false when evaluated
at runtime.

The following operators can be used in <constraint-bool-exp>:

Type Operator Function

Boolean
comparison

==, !=, <,
<=, >, >=

compare two values

Boolean
range or list

in
[<range-
or-list>]

constrain a physical or numeric type to a range of values, con-
strain an enumerated type to a list of values, or constrain a list to
be a subset of another list

Boolean
negation

!, not negate a Boolean expression

Boolean
implication

<exp1>
=>
<exp2>

returns true when the first expression is false or when the sec-
ond expression is true. This construct is the same as: (not exp1)
or (exp2)

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 88

There are also Boolean constants, path expressions and function calls leading to Boolean
variables. Additionally, Boolean expressions can include calls to external methods returning
Boolean values.

The order of precedence for compound Boolean operators is (from tightest to least tight):
parentheses, constants, path expressions and function calls, negation, comparison and range,
and, or, =>. A compound expression containing multiple Boolean operators of equal
precedence is evaluated from left to right, unless parentheses () are used to indicate
expressions of higher precedence.

Description

The part of the planning process that creates data structures and assigns values to fields is
called generation. This process follows the specifications you provide in type declarations, in
field declarations, and in keep statements. Those specifications are called constraints.

The degree to which generated values for a field are random depends on the constraints that
are specified. A field’s values can be either:

• Fully random — without explicit constraints, for example:

tolerance: int

• Fully directed — with constraints that specify a single value, for example:

keep(my_speed == 50kph) # my_speed is set to 50 kph

• Constrained random — with constraints that specify a range of possible values, for
example:

keep(my_speed in [30..80]kph) # my_speed is restricted to a range

Simple Boolean constraints

You can add keep() constraints to fields inside structs, scenarios, or actors, for example:

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 89

my_speed: speed with:

keep(it in [30..80]kph)

You can use the in constraint operator to constrain a physical or numeric parameter to a range
of values. In the example below, the legal value for the field dist is any value between 2 and 4,
inclusive. The legal values for the field i are -1, 0, and 1.

You can also use the in constraint operator to constrain an enumerated type to a list of values
or to constrain a list to be a subset of another list. In the example below, the legal values for
the field ms are assertive and timid. The final constraint, keep(it in list1) has the effect of
adding the three values specified to list1. The order of elements in list1 is not determined.

type my_driving_style: [aggressive, assertive, normal, timid]

struct misc:

dist:distance with:

keep(it in [2..4]m)

i: int with:

keep(it in [-1..1])

ms: my_driving_style with:

keep(it in [assertive, timid])

list1: list of uint with:

keep(it == [0,1,2])

list2: list of uint with:

keep(it == [3,4,5])

keep(it in list1)

Compound Boolean constraints

Compound Boolean constraints define relationships between two or more fields. For example,
if an object has thee fields:

• legal_speed: the legal speed allowed in that road

• lawful_driver: a driver who follows the laws

• current speed: the current speed of the vehicle driven by lawful driver

You can define the current speed in relation to the other fields, so that a lawful driver implies
the current speed is less than or equal to the legal speed:

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 90

keep(lawful_driver => (current_speed <= legal_speed))

Examples

both constraint expressions must evaluate to true

keep(x <= 3 and x > y)

at least one constraint expression must evaluate to true

keep(x <= 3 or x > y)

if the first expression evaluates to true, the second one must

also evaluate to true

keep((x <= 3) => (x > y))

List constraints

You can use the list method .size() and list indexing (list[index]) in list constraint expressions. In
the following example, the constraints specify that the list size is between 2 and 10, inclusive.
The third constraint in this example specifies that the first car in the list must be the object
first_car.

actor my_car_convoy:

first_car: car

cars: list of car

the list will have between 2 and 10 items

the first item is first_car

keep(soft cars.size() <= 10)

keep(soft cars.size() >= 2)

keep(cars[0] == first_car) # list indexing

Read only constraints

The meaning of read_only(<exp>) within a constraint expression is that the value of <exp> is
read, but is not changed. This simplifies the generation problem by making some constraints
unidirectional.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 91

current_speed: speed with:

keep(it <= read_only(max_speed))

Relative strength of keep constraints

You can define the strength of keep constraints:

• A hard constraint must be obeyed when the item is generated. If a hard constraint
conflicts with another hard constraint, a contradiction error is issued. For example, if
the following constraint is applied and the generator cannot assign the value 25 to the
field current_speed, an error is issued:

current_speed: speed with:

keep(it == 25kph)

• A soft constraint must be obeyed unless it contradicts a hard constraint, or a later-
specified soft constraint. However, soft constraints are ignored without issuing an
error. For example, if the following constraint is applied and the generator assigns the
value green to the field color, no error is issued:

color: car_color with:

keep(soft it!= green)

• A default constraint must be obeyed unless another hard constraint directly on that
object specifies a different value. For example, the following specifies a default
constraint:

x: int with:

keep(default it == 0)

Note: You can apply default constraints only to fields within scenarios, not within
actors or structs.

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 92

Soft constraints and default constraints

Default constraints seem like soft constraints. However, default constraints are only overwritten
by a hard constraint directly on that object, whereas soft constraints are ignored if they
contradict hard constraints or a later-applied soft constraint.

Below is an example of a default constraint. Adding the constraint keep(y==0) causes a
contradiction because the value of x remains 0. The default constraint holds because there is
no direct overriding constraint.

scenario car.foo:

x: int with:

keep(default it == 0)

y: int with:

keep(it!= x)

In the example below, the default constraint is replaced by a soft constraint. Here, adding the
constraint keep(y==0) does not cause a contradictions because the value of x is changed to
some non-zero value.

scenario car.foo:

x: int with:

keep(soft it == 0)

y: int with:

keep(it!= x)

Struct, actor or scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 93

8. Scenario members
Summary: This topic describes members that can belong only to scenarios, not
to actors or structs.

8.1. Scenario modifier invocation

Purpose

Constrain or modify the behavior of a scenario

Category

Scenario member

Syntax

[<label>:]<scenario-modifier>(<params>)

Syntax parameters

<label> is an optional label for the invocation. If you have multiple invocations of the same
modifier within the same scenario phase, labels are automatically created unless you specify
them.

<scenario-modifier> is the name of the modifier you want to invoke.

<params> is a comma-separated list of parameters enclosed in parentheses. The parentheses
are required.

Description

You can invoke scenario modifiers in the following contexts:

• Within a scenario declaration outside of the do behavioral definition.

• Within the with: block of a scenario invocation.

• Within the body of an in scenario modifier.

• Within a scenario modifier declaration.

Example map modifier:

Scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 94

The path_has_sign() modifier specifies that the selected path must have a yield sign.

extend top.main:

set_map("hooder.xodr")

do a: cut_in_and_slow() with:

path_has_sign(a.path1, sign: yield)

Example movement modifier:

The position() modifiers specify the position of car1 at the beginning and end of the phase
relative to dut.car.

Note: this example uses labels (p1, p2) to distinguish the two position() modifiers.

do parallel:

dut.car.drive(path) with:

s1: speed([50..120]kph)

car1.drive(path, adjust: true) with:

p1: position(distance: [5..100]m, behind: dut.car, at: start)

p2: position(distance: [5..15]m, ahead_of: dut.car, at: end)

8.2. do (behavior definition)

Purpose

Define the behavior of a scenario

Category

Scenario member

Syntax

do [only] <scenario-invocation>

Syntax parameters

do only replaces all previously defined behavior with the current definition. Use do only to
override previously defined or inherited behavior as well as any extensions to that behavior.

Scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 95

See Scenario invocation (page 98) for a description of <scenario-invocation>.

Description

do is required within a scenario declaration or extension in order to define scenario behavior.
Invoking a scenario causes its do member to be activated.

You define a scenario’s behavior by invoking built-in scenarios, library scenarios, and user-
defined scenarios:

• The M-SDL built-in scenarios perform tasks common to all scenarios, such as
implementing serial or parallel execution mode or implementing time-related actions
such as wait.

• Library scenarios describe relatively complex behavior, such as the car.drive scenario,
and scenario modifiers, that let you control speed, distance between other vehicles
and so on.

• By calling these scenarios in a user-defined scenario, you can describe more complex
behavior, such as a vehicle approaching a yield sign or another vehicle moving at a
specified speed.

In this manner, complex behavior is described by a hierarchy of scenario invocations.

Two operator scenarios commonly used to define scenario behavior are serial and parallel.
For further complexity, use the mix operator to mix multiple scenarios. For example, a weather
scenario can be mixed with a car scenario. See Operator Scenarios (page 102) for a
description of these and other operators.

Within a scenario declaration or extension, use do once and only once in a scenario
declaration or extension. Do not user do when invoking any nested scenario. For example do is
used below to invoke serial, but omitted when invoking turn and yield:

scenario car.zip:

p: path

do serial():

t: turn()

y: yield()

To execute scenario zip, you need to extend top.main, again with do:

Scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 96

extend top.main:

car1: car

set_map(name: "my map")

do z: car1.zip()

If you extend scenario zip, you use do again:

extend car.zip:

do intercept()

These multiple do clauses are required because they are in separate scenario declarations or
extensions, and they execute in sequence. In this example, the sequence is turn, yield, and
intercept.

To make your code easily readable, create an explicit, meaningful label for the scenario
invoked by do as well as all nested scenario invocations. Invocations without an explicit label
are labeled automatically.

In the following example, there is an explicit label for the serial invocation at the root of the
tree. The remaining invocations are labeled automatically. See Automatic label computation
(page 100) for how automatic labels (implicit labels) are computed.

extend top.main:

car1: car

path1: path

do a: serial(): # explicit label "a"

car1.drive(path1) with:

s1: speed(0kph, at: start)

s2: speed(10kph, at: end)

Scenario members PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 97

9. Scenario invocation
Summary: This topic describes how to invoke a scenario.

A scenario can only be invoked within an operator scenario or within a do clause of a scenario
declaration.

Purpose

Invoke a scenario

Category

Scenario invocation

Syntax

[<label-name>:] <scenario-name>(<param>*) [<with-block>]

Syntax parameters

<label-name>

Is an identifier that has to be unique within the scenario declaration. If a label is not specified,
an automatic label is created. See Automatic labels (page 100) for an explanation of how
automatic labels are computed.

<scenario-name>

Is the name of the scenario you want to invoke, optionally including the path to the scenario.
See Actor hierarchy and name resolution (page 22) for an explanation of how names without
explicit paths are resolved.

Note: Invoking the generic form of the scenario (<actor-type>.<scenario>) is not allowed.

<param*>

Is a list of zero or more parameters the form [<field-name>:] [default] <value> where:

• default is the equivalent of adding a default keep() constraint.

• <value> is a single value or a range. A unit is required if the type is physical.

Scenario invocation PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 98

The list must be comma-separated and enclosed by parentheses. It can be name-based
(<field-name>: [default] <value>,…) or, in some special cases, order-based ([default]
<value>,…). In order-based lists, the first value is assigned to the first field in the scenario, and
so on.

In the list, a name-based parameter can follow an order-based parameter, but not vice-versa.
Thus, turn(x:3, y: 5), turn(3, y: 5), and turn(3, 5) are legal and assign the same values, but
turn(x:3, 5) is not allowed.

When invoking an operator scenario, parentheses are allowed, but not required. When invoking
all other scenarios, parentheses are required.

<with-block>

<with-block> is a list of one or more keep() constraints or scenario modifiers, where the
members are listed on separate lines as a block or on the same line as with: and separated by
semi-colons. For example, the following code:

ss2: some_scenario(z: 4) with:

keep(ss2.ss.x==3)

keep(ss2.ss.y==5)

Is the same as:

ss2: some_scenario(z: 4) with: keep(ss2.ss.x==3); keep(ss2.ss.y==5)

Note: cover() definitions are not allowed in scenario invocations.

Example

This example shows the declaration of a scenario called traffic.two_phases. do is required to
define the behavior of two_phases, and it invokes the serial operator scenario. The nested
scenario, car1.drive, whose behavior is defined as a library scenario, is invoked without do.

Scenario invocation PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 99

scenario traffic.two_phases: # Scenario name

Define the cars with specific attributes

car1: car with:

keep(it.color == green)

keep(it.category == truck)

path: path

Define the behavior

do serial():

phase1: car1.drive(path) with:

spd1: speed(0kph, at: start)

spd2: speed(10kph, at: end)

phase2: car1.drive(path) with:

speed([10..15]kph)

9.1. Automatic Label Computation
Scenario and modifier activations that have no user-defined labels get automatically generated
labels (called implicit labels) according to the following algorithm:

Implicit label access syntax is label(<label-path>), where <label-path> is a concatenation of
identifiers using a period (.) as separator.

• If the scenario invocation has a path, the first identifier in the path is used

• Else, the scenario name is used

• If the resulting label is not unique, the suffix (<num>) is added, where <num> is the
next sequential number. The numbering starts from 2.

The following rules apply when accessing implicit labels:

• label() is limited to accessing invocations within the current scenario. To access an
invocation declared in the body of a nested scenario, use the following:

label(<path-in-current-scenario>).<user-provided-label-in-invoked>

Or:

label(<path-in-current-scenario).label(<path-in-invoked-scenario>)

• User-declared labels cannot be used within label(). When combining implicit and user

Scenario invocation PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 100

defined labels, label() should wrap implicit labels only, as in the following example:

<user-defined1>.label(<implicit1>).<user-defined2>.label(<implicit2>)

• Implicit labels use the first identifier in any invocation. For example, the label for
dut.car.drive() is dut, accessed by label(dut)

Example

The following example shows a scenario with no explicitly defined labels and a keep()
constraint that uses the labels.

scenario dut.scen1:

path: path

car1: car

do serial: # label(serial)

car1.drive(path) with: keep_lane() # label(serial.car1)

car1.drive(path) with: # label(serial.car1(2))

lane(1) # label(serial.car1(2).lane)

speed(speed: [30..120]kph) # label(serial.car1(2).speed)

with:

keep(label(serial.car1(2).speed).speed == 45kph)

Scenario invocation PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 101

10. Operator scenarios
Summary: This topic describes built-in scenarios that invoke lower-level
scenarios that serve as operands.

Operator scenarios invoke lower-level scenarios that serve as operands. These scenarios
sometimes enforce implicit constraints on their operands. Operator scenarios have all the
attributes of any scenario, such as start, end and fail events.

The serial operator is an example of an operator scenario. It takes as operands one or more
scenarios and executes them in sequence.

Most operators have implicit serial. In other words, if they have more than one invocation in
them, the invocations are put inside an implicit serial. Only parallel, first_of, one_of, and mix
do not have implicit serial.

10.1. first_of

Purpose

Run multiple scenarios in parallel until the first one terminates

Category

Operator scenario

Syntax

first_of

<scenario-list>

[<with-block>]

Syntax parameters

<scenario-list>

Is a list of two or more scenarios. Each scenario is on a separate line, indented consistently
from the previous line.

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 102

<with-block>

Is a list of one or more keep() constraints or scenario modifiers, where the members are listed
on separate lines as a block or on the same line as with: and separated by semi-colons.

Description

This operator runs multiple scenarios in parallel until the first one terminates. The other
members, if any, are abandoned, meaning they are stopped without emitting the end event or
collecting coverage.

Example

first_of:

i1: intercept_1()

i2: intercept_2()

with:

keep(i1.car1.color != i2.car1.color)

10.2. if

Purpose

Invoke a scenario depending on a condition

Category

Operator scenario

Syntax

if (<bool-exp>):

<scenario>+

[else if (<bool-exp>):

<scenario>+]

[else:

<scenario>+]

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 103

Syntax parameters

<bool-exp>

Is an expression that evaluates to true or false. Enclosing parentheses are optional.

<scenario>+

Is a list of one or more scenarios to invoke.

Description

Note: Both the else if and the else clauses are optional. Multiple else if clauses are allowed.

Example

if (x < y):

cut_in()

interceptor()

else if (x == y):

two_cut_in()

else:

out("x > y")

10.3. match

Purpose

Monitors a scenario and ends on first success or failure

Category

Operator scenario

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 104

Syntax

match([anchored | floating] [, cover: <bool>]):

<monitored-scenario>

[then:

<success-scenario>]

[else:

<fail-scenario>]

Syntax parameters

<monitored-scenario>

Is the passive scenario that you hope to match with the scenario that is actually running.

<success-scenario>

Is a scenario that informs you of the successful coverage collection.

<fail-scenario>

Is a scenario that informs you of the failure of the match.

Scenario arguments

An anchored match tracks a single occurrence of the monitored scenario. It invokes
<success-scenario> if matched, and <fail-scenario> otherwise. If abandoned, neither sub-
scenario is invoked. anchored is the default.

A floating match tracks all possible occurrences of <monitored-scenario>. It invokes
<success-scenario> upon a first match (and ends). It invokes <fail-scenario> if abandoned
before a match was found. Failures of tracked <monitored-scenario> are silently ignored.

cover must be set to true for coverage to be collected. Because you might have several
match() expressions monitoring the same scenario instance, coverage collection is off (false)
by default.

Description

Scenarios can be either active or passive. Both active and passive scenarios are interpreted as
instructions for collecting coverage data, but only active scenarios actually execute. Passive
scenarios are only monitored for coverage.

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 105

In order for coverage data from a passive scenario to be collected, the passive scenario must
match a scenario that is actually executing. Matching a scenario means that every condition
was met at the right time for the passive scenario to play out in its entirety.

match() invokes a monitor on <monitored-scenario>, the passive scenario. If a successful
match occurs, <success-scenario> is invoked and coverage data for the monitored scenario is
collected. Upon failure, <fail-scenario> is invoked. match() itself ends upon success or failure
of the sub-scenarios.

Note: The failure of monitored-scenario does not fail match(). A failure within success-scenario
or fail-scenario will fail match().

Example

scenario top.report_match_success:

do log_info("MATCH: intercept_1 and intercept_2 successfully matched")

scenario top.report_match_failure:

do log_info("NO MATCH: intercept_1 and intercept_2 no match found")

extend top.main:

car1: car

path1: path

do serial:

i1: intercept_1()

match():

i2: intercept_2()

then:

report_match_success()

else:

report_match_failure()

10.4. multi_match

Purpose

Monitors a scenario for as long as the enclosing context exists

Category

Operator scenario

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 106

Syntax

multi_match([anchored | floating] [, cover: <bool>]):

<monitored-scenario>

[then:

<success-scenario>]

[else:

<fail-scenario>]

Syntax parameters

<monitored-scenario>

Is the passive scenario that you hope to match with the scenario that is actually running.

<success-scenario>

Is a scenario that informs you of the successful coverage collection.

<fail-scenario>

Is a scenario that informs you of the failure of the match.

Scenario arguments

An anchored match tracks a single occurrence of the monitored scenario. It invokes
<success-scenario> on every matched occurrence, and <fail-scenario> on every failed
occurrence. If abandoned, neither sub-scenario is invoked. anchored is the default.

A floating match tracks all possible occurrences of <monitored-scenario>. It invokes
<success-scenario> on any match. It invokes <fail-scenario> if abandoned before a first match
was found. Intermediate failed matches are silently ignored.

cover must be set to true for coverage to be collected. Because you might have several
match() expressions monitoring the same scenario instance, coverage collection is off (false)
by default.

Description

In contrast to match() , which ends on first success, multi-match() tracks <monitored-
scenario> for as long as the enclosing context exists. If declared at the top level, multi-match()
continues throughout the run.

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 107

Example

scenario top.report_match_success:

do log_info("MATCH: intercept_1 and intercept_2 successfully matched")

scenario top.report_match_failure:

do log_info("NO MATCH: intercept_1 and intercept_2 no match found")

extend top.main:

car1: car

path1: path

do serial:

i1: intercept_1()

multi_match():

i2: intercept_2()

then:

report_match_success()

else:

report_match_failure()

10.5. mix

Purpose

Invoke a secondary scenario and mix it into the current scenario

Category

Operator scenario

Syntax

mix[(<param>*)]:

<scenario-invocation>+

[<with-block>]

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 108

Syntax parameters

<scenario-invocation>+

Is a list of the scenarios you want to invoke. Each scenario is on a separate line, indented
consistently from the previous line. These invocations can have the full syntax including
argument list and member block.

<with-block>

Is a list of one or more keep() constraints or scenario modifiers, where the members are listed
on separate lines as a block or on the same line as with: and separated by semi-colons.

Scenario arguments

<param>* is a list of zero or more of the following parameters:

• start_to_start: <time-exp>

• end_to_end: <time-exp>

• overlap: <type>

If no parameters are specified, the parentheses are optional.

The start_to_start and end_to_end parameters are the time offsets of the secondary
scenarios relative to the primary one.

The overlap parameter is one of the following:

• any_mix specifies that there is no constraint on the amount of overlap between
operands. This is the default.

• full specifies that the secondary scenarios fully overlap the primary one: start_to_start
<= 0, end_to_end >= 0.

• inside specifies that the secondary scenarios are fully overlapped by the primary
scenario: start_to_start >= 0, end_to_end =< 0.

• equal specifies that the primary and secondary scenarios start and end at the same
point in time.

• initial specifies that the secondary scenarios cover at least the start of the primary
scenario: start_to_start <= 0, end_to_end can be anything.

• final specifies that the secondary scenarios cover at least the end of the primary
scenario: end_to_end >= 0, start_to_start can be anything.

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 109

Note: The various overlap parameters apply separately for each secondary operand. The
secondary operands do not have to overlap each another in the manner described. For
example, mix(a,b,c,d) is really mix(mix(mix(a,b),c),d).

Description

mix is non-symmetrical: the first operand is primary determines the time and the context. The
other operands are secondary. For example, given the scenario

scenario dut.cut_in_with_rain:

do mix():

cut_in()

rainstorm()

rainstorm begins and ends when cut_in begins and ends. This is different from

scenario dut.cut_in_with_rain:

do mix():

rainstorm()

cut_in()

The order of all the operands after the first is not important. The following are the same:

scenario dut.cut_in_with_rain_and_pedestrian:

do mix():

cut_in()

rainstorm()

pedestrian_crossing()

scenario dut.cut_in_with_rain_and_pedestrian:

do mix():

cut_in()

pedestrian_crossing()

rainstorm()

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 110

10.6. one_of

Purpose

Choose a sub-invocation randomly from a list

Category

Operator scenario

Syntax

one_of:

<scenario-list>

[<with-block>]

Syntax parameters

<scenario-list>

Is a list of two or more scenarios. Each scenario is on a separate line, indented consistently
from the previous line.

<with-block>

Is a list of one or more keep() constraints or scenario modifiers, where the members are listed
on separate lines as a block or on the same line as with: and separated by semi-colons.

Example

one_of:

i1: intercept_1()

i2: intercept_2()

with:

keep(i1.car1.color != i2.car1.color)

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 111

10.7. parallel

Purpose

Execute activities in parallel within one or more phases

Category

Operator scenario

Syntax

parallel[([duration:]<time-exp>)]:

<invocation-list>

[<with-block>]

Syntax parameters

<invocation-list>

Is a list of the scenarios that you want to invoke in parallel. These invocations can have the full
syntax including argument list and member block.

<with-block>

Is a list of one or more keep() constraints or scenario modifiers, where the members are listed
on separate lines as a block or on the same line as with: and separated by semi-colons.

Scenario arguments

<time-exp> is an expression of type time specifying how long the activities occur.

If no parameters are specified, the parentheses are optional.

Description

The parallel operator describes the activities of two or more actors that start concurrently. For
example:

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 112

p1: parallel:

car1.drive(path)

weather(kind: clear)

To describe consecutive activities of multiple actors, invoke parallel multiple times from within
the serial operator. For example:

s1: serial:

p1: parallel:

car1.drive(path)

weather(kind: clear)

p2: parallel:

car1.drive(path)

weather(kind: rain)

Each invocation of parallel is referred to informally as a phase. Each activity (or nested
scenario) commences at the start of a phase. A phase ends when any of the following
conditions is met:

• If all of the scenario’s nested scenarios end, the scenario ends.

• If a duration parameter is specified for a phase, then it ends when the specified
duration has been reached.

Failure of any member causes parallel to fail.

Example

do serial():

get_ahead: parallel(duration: [1..5]s):

dut.car.drive(path) with:

speed([30..70]kph)

car1.drive(path, adjust: true) with:

position(distance: [5..100]m,

behind: dut.car, at: start)

position(distance: [5..15]m,

ahead_of: dut.car, at: end)

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 113

10.8. repeat

Purpose

Run multiple scenarios in sequence repeatedly

Category

Operator scenario

Syntax

repeat([<count>]):

<scenario>+

Syntax parameters

<scenario>+

Is a list of one or more scenarios.

Scenario arguments

<count> is the number of times to repeat the scenarios. If omitted, repeat loops until some
outer context terminates it.

If no parameters are specified, the parentheses are optional.

Example

do repeat(3):

i1: intercept_1()

i2: intercept_2()

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 114

10.9. serial

Purpose

Execute two or more scenarios in a serial fashion

Category

Operator scenario

Syntax

serial[([duration:]<time-exp>)]:

<scenario>+

[<with-block>]

Syntax parameters

<scenario>+

Is a list of the scenarios that you want to invoke.

<with-block>

Is a list of one or more keep() constraints or scenario modifiers, where the members are listed
on separate lines as a block or on the same line as with: and separated by semi-colons.

Scenario arguments

<time-exp> is an expression of type time specifying how long the activities occur.

If no parameters are specified, the parentheses are optional.

Description

In serial execution mode, each member starts when its predecessor ends. The scenario ends
when the last member ends. Failure of any member causes serial to fail.

The default execution for all scenarios you create is serial, with no gaps. You can add gaps
between scenarios using the wait or wait_time scenarios.

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 115

Example

In the following example, a gap of 3 to 5 seconds is added between the execution of
first_scenario() and second_scenario().

scenario dut.my_scenario:

do serial():

fs: first_scenario()

w1: wait_time([3..5]second)

ss: second_scenario()

10.10. try

Purpose

Run a scenario, handling its failure by invoking the else-scenario

Category

Operator scenario

Syntax

try:

<scenario>+

[else:

<else-scenario>+]

Syntax parameters

<scenario>+

Is a list of the scenarios that you want to invoke.

<else-scenario>+

Is a list of the scenarios you want to invoke if <scenario>+ fails.

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 116

Description

try fails only if <else-scenario>+ fails.

Operator scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 117

11. Event-related scenarios
Summary: This topic describes scenarios that perform event-related actions.

Other built-in scenarios perform event-related actions, such as waiting for an event or emitting
an event. The wait scenario, for example, pauses the current scenario until the specified event
occurs.

11.1. emit

Purpose

Emit an event in zero-time

Category

Built-in scenario

Syntax

emit <event-path>[(<param>+)]

Syntax parameters

<event-path>

Has the format [<field-path>.]<event-name>.

Scenario arguments

<param>+ is a comma-separated list of one or more parameters defined in the event
declaration in the form <param-name>: <value>. Passing parameters by position is not
allowed.

11.2. wait

Purpose

Delay action until the qualified event occurs

Event-related scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 118

Category

Built-in scenario

Syntax

wait <qualified-event>

Syntax parameters

<qualified-event>

Has the format [<bool-exp>][@<event-path> [=> <name>]]. If <event-path> is missing, the
basic clock is used. If <bool-exp> is missing, true is assumed. At least one of <event-path>
and <bool-exp> must be specified.

If specified, the => <name> clause creates a pseudo-variable with that name in the current
scenario (the event object variable). The variable is used to access the event fields, which is
useful for collecting coverage over their values.

Description

Note: any scenario has these predefined events: start, end, fail.

Examples

do serial:

w1: wait @top.my_event

w2: wait (a > b) @top.my_event

w3: wait (a > b)

11.3. wait_time

Purpose

Wait for a period of time

Event-related scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 119

Category

Built-in scenario

Syntax

wait_time(<time-exp>)

Scenario arguments

<time-exp> is an expression of type time specifying how long to pause the scenario invocation.

Note: Time granularity is determined by the simulator callback frequency.

Examples

do serial:

w1: wait_time([3..5]second)

max is a field defined with type time and constrained to a value

w2: wait_time(max)

Event-related scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 120

12. Zero-time scenarios
Summary: This topic describes scenarios that execute in zero time.

12.1. call

Purpose

Call an external method

Category

Built-in scenario

Syntax

call <method>(<param>*)

Syntax parameters

<method>

Is the name of a declared external method. If the method is not in the current context, the
name must be specified as <path-name>.<method-name>

<param>*

Is a comma-separated list of method parameters.

Zero-time scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 121

Example

extend car:

def calculate_dist_to_other_car(other_car: car) is external.cpp("calculate_dist_t

o_other_car", "libexample.so")

extend top.main:

on @c.slow.start:

call dut.car.calculate_dist_to_other_car(c.car1)

set_map(name: "$FTX_QA/odr_maps/hooder.xodr")

do c: cut_in_and_slow()

12.2. dut.error

Purpose

Report an error and print message to STDOUT.

Category

Built-in scenario

Syntax

dut.error(<string>)

Scenario arguments

<string> is a message that describes a dut error that occurred, enclosed in double quotes.

12.3. end

Purpose

End the current scope of the current scenario and optionally print a message.

Zero-time scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 122

Category

Built-in scenario

Syntax

end([<string>])

Scenario arguments

<string> is an informational message

Description

This scenario ends the current scope of the current scenario, emitting the end event and
collecting coverage. You can optionally print a message.

Example

on @foo:

end()

do cut_in()

12.4. fail

Purpose

Fail the current scope of the current scenario and optionally print a message.

Category

Built-in scenario

Zero-time scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 123

Syntax

fail([<string>])

Scenario arguments

<string> is an informational message to facilitate debugging.

Description

Note: If not inside a try operator, the failure propagates up the invocation tree, failing the
invoking scenarios.

12.5. Zero-time messaging scenarios

Purpose

Print message to STDOUT.

Category

Built-in scenario

Syntax

log(<string>)

log_info(<string>)

log_debug(<string>)

log_trace(<string>)

Scenario arguments

<string> is an informational message, enclosed in double quotes.

Description

The following constructs are used to print messages at various levels of verbosity:

Zero-time scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 124

Name Description

log() Used to report major events and messages

log_info() More detailed reporting

log_debug() Verbose information that may be useful for debug

log_trace() Most detailed information used to trace execution

Example

scenario top.report_match_success:

do log_info("MATCH: intercept_1 and intercept_2 successfully matched")

scenario top.report_match_failure:

do log_info("NO MATCH: intercept_1 and intercept_2 no match found")

extend top.main:

car1: car

path1: path

do serial:

i1: intercept_1()

match():

i2: intercept_2()

then:

report_match_success()

else:

report_match_failure()

Zero-time scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 125

13. Movement scenarios
Summary: This topic describes scenarios that describe a continuous segment of
movement.

Scenarios that describe a continuous segment of movement by a single actor are called
movement scenarios. car.drive moves a vehicle along a specified path, optionally with a
scenario modifier such as speed. For example:

do serial:

car1.drive(path1) with:

speed([30..70]kph)

13.1. drive

Purpose

Describe a continuous segment of movement by a car actor.

Category

Movement scenario (car actor)

Syntax

drive([duration: <time>,][path:]<path>[, exactly: <bool>][, adjust: <bool>])[<with-b

lock>]

Parameters

<time> is a single time value or a range with a time unit, such as [100..120]s.

<path> is the actual path (road) on which the drive is performed. This parameter is required.

exactly specifies whether to perform the drive from the start to the end of the <path> or just
some subset on it. (Default: false).

adjust specifies whether to perform automatic adjustment to achieve the desired
synchronization specified for this drive (if any). (Default: false).

Movement scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 126

<with-block> is a list of one or more keep() constraints or scenario modifiers, where the
members are listed on separate lines as a block or on the same line as with: and separated by
semi-colons. For example, the following code:

car1.drive(path1) with:

speed(30kph)

acceleration(5kphps)

is the same as

car1.drive(path1) with: speed(30kph); acceleration(5kphps)

Example

do parallel:

car1.drive(path1, adjust: true) with:

p1: position([5..100]meter, behind: dut.car, at: start)

p2: position([5..15]meter, ahead_of: dut.car, at: end)

car2.drive(path1, adjust: true) with:

avoid_collisions(false)

Movement scenarios PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 127

14. Implicit movement constraints
Summary: This topic describes constraints that apply implicitly.

Consecutive movement scenarios of the same actor obey some obvious implicit constraints. In
the following example, the consecutive drive scenarios of car1 imply that the location, speed,
and so on at the end of d1 are the same as those at the start of d2.

do serial():

d1: car1.drive(path1)

d2: car1.drive(path1)

Furthermore, an actor can appear in any set of (potentially overlapping) movement scenarios.
In fact, the movement of the same actor can be sliced in multiple ways. For example:

• A traverse_junction scenario specifies three consecutive drive scenarios: enter,
during and exit.

• A tire_punctured scenario also specifies three consecutive drive scenarios: before,
during and after. In after, the car drives more slowly and erratically.

In a particular test, a specific car can be active in both traverse_junction and tire_punctured.
These scenarios can be in arbitrary relation to each other: they might completely or partially
overlap. It is the job of the planner to solve them all together.

Implicit movement constraints PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 128

15. Scenario modifiers
Summary: This topic describes scenario modifiers that constrain or modify the
behavior of a scenario.

Scenario modifiers do not define the primary behavior of a scenario. Instead, they constrain or
modify the behavior of a scenario for the purposes of a particular test. Scenario modifiers are
especially useful if you just want to group together a group of related constraints or modifiers.

15.1. in modifier

Purpose

Modify the behavior of a nested scenario.

Category

Scenario modifier

Syntax

in <scenario-path> <with-block>

Syntax parameters

<scenario-path> is the path to the nested scenario instance whose behavior you want to
modify.

<with-block> is a list of one or more keep() constraints or scenario modifiers, where the
members are listed on separate lines as a block or on the same line as with: and separated by
semi-colons. For example, the following code:

in ci.ga.car1 with: speed([50..75]kph); lane(1)

Is the same as:

Scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 129

in ci.ga.car1 with:

speed([50..75]kph)

lane(1)

Note: cover() definitions are not allowed in scenario modifiers, including in.

Expressions in <with-block> can refer to values in the calling context (where it was invoked).
This is done by using outer in a path expression.

Description

All modifiers inserted via the in modifier are added to the original set of modifiers. Together
they influence the behavior of the scenario. If there is any contradiction between them, then an
error occurs.

Example

In the following example, the speed and lane constraints apply to the car1.drive movement in
the get_ahead phase of the dut.cut_in scenario.

in label(cut_in).label(get_ahead.car1) with: speed([50..75]kph); lane(1)

do cut_in()

Example using outer

You can use the keyword outer to constrain a nested scenario from an enclosing scenario or
test. In the following example, the constrained speed is defined in a drive_attributes struct
that is instantiated in the extension to top.main.

Notes:

• In this example, no speed constraints are applied to car1.drive() in the nested
scenario. This avoids the possibility of constraint contradictions when it is nested
within different scenarios.

• Because the invocations of the nested and enclosing scenarios are labeled explicitly
as nested and enclosing, and car1.drive() is labeled as start_up, the scenario
pathname for car1.drive() is enclosing.nested.start_up.

Scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 130

struct drive_attributes:

my_speed: speed with:

keep(it <= 70kph)

scenario dut.nested_scenario:

car1: car

path: path

do serial:

start_up: car1.drive(path)

scenario dut.enclosing_scenario:

my_car: car

my_path: path

do nested: dut.nested_scenario(car1: my_car, path: my_path)

extend top.main:

drv_attr: drive_attributes

in enclosing.nested.start_up with:

speed(outer.drv_attr.my_speed)

do enclosing: dut.enclosing_scenario()

15.2. on qualified event

Purpose

Execute actions when an event occurs.

Category

Scenario modifier

Syntax

on <qualified-event>:

<member>

Scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 131

Syntax parameters

<qualified-event>

Has the format [<bool-exp>][@<event-path> [=> <name>]]. If <event-path> is missing, the
basic clock is used. If <bool-exp> is missing, true is assumed. At least one of <event-path>
and <bool-exp> must be specified.

If specified, the => <name> clause creates a pseudo-variable with that name in the current
scenario (the event object variable). The variable is used to access the event fields, which is
useful for collecting coverage over their values.

<member>

Is a call to an external method, a zero-time scenario such as end(), fail() or a zero-time
messaging scenario.

Example

scenario top.scenario1:

path: path

car1: car

event near_collision

on @near_collision:

log_info("Near collision occurred.")

do serial:

car1.drive(path)

15.3. synchronize

Purpose

Synchronize the timing of two sub-invocations.

Category

Scenario modifier

Scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 132

Syntax

synchronize (slave: <inv-event1>, master: <inv-event2> [, offset: <time-exp>])

Scenario arguments

<inv-event1>, <inv-event2>

<inv-event1> is a scenario invocation event that you want to synchronize with <inv-event2>
(another scenario invocation event).

An invocation event has the form <invocation-label>[.<event>], where <invocation-label> is the
label of some scenario invocation in the current scope. The default event is the end event of
that invocation, but you can also specify start, for example, drive1.start.</td>

<time-exp>

Is an expression of type time. It signifies how much time should pass from the master event to
the slave event. If negative, the slave event should happen before the master event.

Description

The synchronize() modifier accepts two events. You can synchronize more events by using
multiple statements.

Example

In this example, x.start should end five seconds after y.start.

parallel():

x: dut.cut_in()

y: dut.intercept()

with:

synchronize(x.start, y.start, offset: 5s)

Scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 133

15.4. trace()

Purpose

Define a trace action.

Category

Scenario modifier

Syntax

trace(<exp>, [<param>*])

Syntax parameters

<exp>

Is an expression defining the value you want to be traced. Typically the expression is the name
of a field or an expression referring to multiple fields. The expression is evaluated in the context
of the current scenario, but it can also refer to any global field.

<param>*

Is a comma-separated list of zero or more of the following:

• unit: <unit> specifies a unit for a physical quantity such as time, distance, speed. The
expression’s value is converted into the specified unit, and that value is used as the
trace value.

Note: You must specify a unit for trace expressions that have a physical type.
Conversely, do not specify a unit for all other items.

• name: <name> specifies a name for the trace expression. By default, <name> is the
same as <exp>, with any sequence of non-alphanumerics replaced by an underscore.
This name is used in all targets (the graphical timeline, the CSV file, and the log file). It
is also used for filtering.

Scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 134

For example, if you specify trace(speed1 - speed2), the default name for this item is
speed1_speed2. Note that the operator and surrounding white space was replaced by
an underscore. You can change this default name using the name parameter, for
example trace(speed1 - speed2, name: speed_diff).

• title: <string> defines the explanatory text for the expression to be used in the log and
as the headers in the CSV file. The default title is the text of the <exp>.

Description

Tracing an item is useful because you can see exactly when the value of an expression
changes during the scenario execution.

Note: Defining a trace with the trace() scenario modifier only identifies the items to be traced.
To activate the trace, you must issue interactive trace commands in an M-SDL tool such as
Foretify.

Example trace definitions

extend dut.cut_in_and_slow: # Add some tracing to this scenario

trace(car1.state.speed, unit: kph)

trace(dut.car.state.speed, unit: kph)

trace(car1.state.speed - dut.car.state.speed, unit: kph, name: speed_diff,

title: "speed diff to ego")

trace(side) # Will show the side as enum (constant value in this case)

extend top.main:

do c: cut_in_and_slow()

15.5. until

Purpose

End an invoked scenario when an event occurs.

Category

Scenario modifier

Scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 135

Syntax

until(<qualified-event>)

Syntax parameters

<qualified-event>

Has the format [<bool-exp>][@<event-path> [=> <name>]]. If <event-path> is missing, the
basic clock is used. If <bool-exp> is missing, true is assumed. At least one of <event-path>
and <bool-exp> must be specified.

If specified, the => <name> clause creates a pseudo-variable with that name in the current
scenario (the event object variable). The variable is used to access the event fields, which is
useful for collecting coverage over their values.

Example

The until modifier has the same functionality as on qualified-event : end(), so the following two
examples are the same.

Scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 136

Example 1

do serial:

phase1: car1.drive(path) with:

speed(40kph)

until(@e1)

phase2: car1.drive(path) with:

speed(80kph)

until(@e1)

Example 2

on @e1:

end()

do serial:

phase1: car1.drive(path1) with:

speed(40kph)

phase2: car1.drive(path1) with:

speed(80kph)

Scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 137

16. Movement-related scenario modifiers
Summary: This topic describes scenario modifiers that specify or constrain
attributes of movement scenarios.

Movement-related scenario modifiers specify or constrain attributes of movement scenarios
such as car.drive. They must appear either as members of other scenario modifiers or as
members of a movement scenario after with:. For example:

do serial:

car1.drive(path) with:

speed([30..70]kph)

Here are some examples of other scenario modifiers:

do parallel:

truck1.drive(path)

car1.drive(path) with:

Drive behind truck1

position([20..50]meter, behind: truck1)

Drive faster than truck1

speed([0.1..5.0]mph, faster_than: truck1)

Drive one lane left of truck1

lane([1..1], left_of: truck1)

The following scenario modifiers set an attribute throughout a scenario or a scenario phase:

speed() # The speed

position() # The y (longitude) position

lane() # The lane

The following scenario modifiers specify how an attribute changes over a period:

change_speed() # The change in speed

change_lane() # The change in lane

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 138

The scenario modifiers that set a speed, position, and so on can be either absolute or relative.
For example:

speed([10..15]kph) # Absolute

speed([10..15]kph, faster_than: car1) # Relative

speed([10..15]kph, slower_than: car1) # Relative

The relative versions require two vehicles moving in parallel. They may also have multiple
parameters such as faster_than and slower_than, but at most you can specify only one.
These two constraint is checked at compile time.

All these modifiers have an optional at: parameter, with the following possible values:

• all – this constraint holds throughout this period (default)

• start – this constraint holds at the start of the period

• end – this constraint holds at the end of the period

All these modifiers have an optional gen_mode parameter that controls how modifier
constraints are enforced. By default, modifier constraints are always enforced during the initial
planning of the scenario and during execution. In some cases, enforcement might result in a
constraint contradiction either during planning or at runtime. For example, if scenario execution
deviates from the original plan due to unexpected DUT behavior, enforcing movement modifier
constraints during execution can cause the scenario to exit before completion. Using the
gen_mode parameter, you can relax enforcement of movement modifier constraints in order to
complete scenario planning and execution.

The gen_mode parameter has the following possible values:

• hard_mode - Modifier constraints are enforced both during planning and execution.
This is the default.

• soft_mode - Modifier constraints are enforced during planning whenever they are not
contradicted by another modifier constraint. They are ignored if contradicted. In this
mode, modifier constraints are ignored during execution.

• gen_only - Modifier constraints are enforced during planning but ignored during
execution.

Example:

car1,drive() with:

speed([30..50]kph, gen_mode: soft_mode)

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 139

Parameters can be passed by name or by order. If no arguments are passed, the defaults are
applied. For example, the following three lane() invocations are supported and have the same
effect.

lane(lane: 1)

lane(1)

lane()

16.1. acceleration

Purpose

Specify the rate of acceleration of an actor.

Category

Scenario modifier

Syntax

acceleration([acceleration:]<acceleration-exp>)

Parameters

<acceleration-exp> is either a single value or a range appended with an acceleration unit. The
unit is kphps (kph per second) or mpsps (meter per second per second).

Example

do serial:

car1.drive(path) with:

acceleration(5kphps)

This accelerates by 5kph every second

For example, from 0 to 100kph in 50 seconds.

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 140

16.2. avoid_collisions

Purpose

Allow or disallow an actor to collide with another object.

Category

Scenario modifier

Syntax

avoid_collision(<bool>)

Parameters

<bool> is either true or false.

Description

By default, all actors avoid collisions (avoid_collisions(true)). This means that the runtime
mechanism for collision avoidance is on for the drive() scenario specified by the modifier.
When set to false, the actor moves regardless of surrounding traffic and may collide.

Example

do serial:

car1.drive(path) with:

avoid_collisions(false)

16.3. change_lane

Purpose

Specify that the actor change lane.

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 141

Category

Scenario modifier

Syntax

change_lane([[lane:]<value>,] [[side:]<av-side>])

Parameters

<value> is the number of lanes to change from, either a single value or a range. The default is
1.

<av-side> is left or right. <av-side> is randomized if not specified.

Examples

do serial:

car1.drive(path) with:

Change lane one lane to the left

change_lane(side: left)

do serial:

car1.drive(path) with:

Change the lane 1, 2 or 3 lanes to the right

change_lane([1..3], right)

16.4. change_speed

Purpose

Change the speed of the actor for the current period.

Category

Scenario modifier

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 142

Syntax

change_speed([speed:]<speed>)

Parameters

<speed> is either a single value or a range. You must specify a speed unit.

Example

do serial:

car1.drive(path) with:

change_speed([-20..20]kph)

16.5. keep_lane

Purpose

Specify that the actor stay in the current lane.

Category

Scenario modifier

Syntax

keep_lane()

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 143

Example

do serial:

car1.drive(path) with:

keep_lane()

16.6. keep_position

Purpose

Maintain absolute position of the actor for the current period.

Category

Scenario modifier

Syntax

keep_position()

Example

do serial:

car1.drive(path) with:

keep_position()

16.7. keep_speed

Purpose

Maintain absolute speed of the actor for the current period.

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 144

Category

Scenario modifier

Syntax

keep_speed()

Example

do serial:

car1.drive(path) with:

keep_speed()

16.8. lane

Purpose

Set the lane in which an actor moves.

Category

Scenario modifier

Syntax

lane([[lane:]<lane>]

[right_of | left_of | same_as: <car>] | [side_of: <car>, side: <av-side>]

[at: <event>])

Parameters

<lane> is the lane to drive in, either a single integer value (reals are rounded) or a range. The
left-most lane is 1. Negative numbers mean to the right. The default is 1.

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 145

<car> is a named instance of the car actor, for example car2.

<av-side> is right or left.

<event> is start, end or all. The default is all, meaning that the specified lane is maintained
throughout the current period.

Description

When right_of is specified, the context car should be slower than car by the specified value in
the relevant period. left_of and same_as contradict right_of, so you cannot use them
together.

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 146

Examples

do serial:

car1.drive(path) with:

Drive in left-most lane

lane(1)

do parallel:

car2.drive(path)

car1.drive(path) with:

Drive one lane left of car2

lane(left_of: car2)

do parallel:

car2.drive(path)

car1.drive(path) with:

At the end of this phase, be either one or two lanes

to the right of car2

lane([1..2], right_of: car2, at: end)

do parallel:

car2.drive(path)

car1.drive(path) with:

Be either one left, one right or the same as car2

lane([-1..1], right_of: car2)

do parallel:

car2.drive(path)

car1.drive(path) with:

Be in the same lane as car2

lane(same_as: car2)

16.9. lateral

Purpose

Set location inside the line along the lateral axis.

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 147

Category

Scenario modifier

Syntax

lateral([distance: <distance>][line: <line>][at: <event>])

Parameters

<distance> is the offset from reference line. The default is [-0.1..0.1]meter.

<line> is the reference line the offset is measured from, either right (the right side of the car),
left(the left side of the car) or center (the center of the car). The default is center.

<event> is start, end or all. The default is all, meaning that the specified distance is
maintained throughout the current phase.

Example

do serial:

car1.drive(path) with:

Have that distance at the start of the phase

lateral(distance: 1.5meter, line: right, at: start)

16.10. position

Purpose

Set the position of an actor along the x (longitude) dimension

Category

Scenario modifier

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 148

Syntax

position([distance:]<distance> | time: <time>, [ahead_of: <car> | behind: <car>], [a

t: <event>])

Parameters

<distance> is a single value or a range with a distance unit.

<time> is a single value or a range with a time unit.

<car> is a named instance of the car actor, for example car2.

<event> is start, end or all. The default is all, meaning that the specified position is maintained
throughout the current period unless time is specified along with ahead_of or behind_of. In
that case, the physical distance between the actors may vary during the time period. See
Description below for more details.

Description

The position() modifier lets you specify the position of an actor relative to the start of the path
or relative to another actor. You can specify the position by distance or time (but not both).

When ahead_of is specified, the context car must be ahead of car by the specified value in the
relevant period. behind contradicts ahead_of, so you cannot use them together.

When time is specified along with ahead_of or behind_of, the physical distance is calculated
using the speed of the car that is behind (irrespective of whether it’s the scenario’s actor or the
referenced car) and the location at that moment of the car that is ahead. The speed of the car
that is ahead is not taken into the calculation. If <event> is all, the physical distance at any
point in time refers to the speed of car that is behind at that moment and the location of the car
that is ahead at that same moment (meaning that the physical distance may vary during the
time period). The following two examples are equivalent; in both cases the physical distance is
calculated according to the speed of car2.

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 149

do parallel:

car1.drive(path) with:

speed(speed: 30kph, at: end)

car2.drive(path) with:

speed(speed: 40kph, at: end)

position(time: 3second, behind: car1, at: end)

is identical to:

do parallel:

car1.drive(path) with:

speed(speed: 30kph, at: end)

position(time: 3second, ahead_of: car2, at: end)

car2.drive(path) with:

speed(speed: 40kph, at: end)

Examples

do serial:

car1.drive(path) with:

Absolute from the start of the path

position([10..20]meter)

do parallel:

car1.drive(path)

car2.drive(path) with:

40 meters ahead of car1 at end

position(40meter, ahead_of: car1, at: end)

do parallel:

car1.drive(path)

car2.drive(path) with:

Behind car1 throughout

position([20..30]meter, behind: car1)

do parallel:

car1.drive(path)

car2.drive(path) with:

Behind car1, measured by time

position(time: [2..3]second, behind: car1)

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 150

16.11. speed

Purpose

Set the speed of an actor for the current period.

Category

Scenario modifier

Syntax

speed([speed:]<speed>, [faster_than: <car> | slower_than: <car>][, at: <event>])

Parameters

<speed> is either a single value or a range. You must specify a speed unit.

<car> is the instance name of the car actor, for example car2.

<event> is start, end or all. The default is all, meaning that the specified speed is maintained
throughout the current period.

Description

When faster_than is specified, the context car must be faster than <car> by the specified
value in the relevant period. slower_than contradicts faster_than, so you cannot use them
together.

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 151

Examples

do serial:

car1.drive(path) with:

Absolute speed range

speed([10..20]kph)

do parallel:

car1.drive(path)

car2.drive(path) with:

Faster than car1 by [1..5]kph

speed([1..5]kph, faster_than: car1)

do serial:

car1.drive(path) with:

Have that speed at end of the phase

speed(5kph, at: end)

do parallel:

car1.drive(path)

car2.drive(path) with:

Really either slower or faster than car1

speed([-20..20]kph, faster_than: car1)

Movement-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 152

17. Map-related scenario modifiers
Summary: This topic describes scenario modifiers that constraint the map or
paths on the map.

Map-related scenario modifiers usually handle a parameter of type path. This parameter is the
name of a field in the scenario representing a path in the current map. Some map constraints
specify two path parameters, where one field is of type path and the other is of type sub_path.
These constraints apply not to two separate paths, but to a path and a segment of that path.

When an MSDL tool choses a location on a map, it must take into account all the constraints
associated with the path and select a random location (the path itself) out of all the appropriate
locations in the map.

For example, if you specify a minimum of two lanes, only locations with at least two lanes are
considered. If you require the car to reach 60kph and to abide the law, then only locations that
allow a legal speed of more than 60kph are considered. If you require the car to reach 50kph at
some point, then only paths that are long enough for the car to accelerate to that speed are
considered.

17.1. path_curve

Purpose

Specify that the path has a curve.

Category

Scenario modifier

Syntax

path_curve([path:]<pathname>,

[min_radius:]<radius>,

[max_radius:]<radius>,

[[side:]<av-side>])

Parameters

<pathname> is the name of a path instance in the scenario.

<radius> is a value of type distance.

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 153

<av-side> is a value of type av_side, one of right or left.

Example

do serial:

car1.drive(path1) with:

path_curve(path1, max_radius: 11meter, min_radius: 6meter, side: left)

17.2. path_different_dest

Purpose

Specify that two paths have different destinations.

Category

Scenario modifier

Syntax

path_different_dest([path1:]<field-name>,

[path2:]<field-name>)

Parameters

<field-name> is the name of a field in the scenario. There must be two fields of type path.

Example

do serial:

car1.drive(path1) with: path_different_dest(path1, path2)

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 154

17.3. path_different_origin

Purpose

Specify that two paths have different origins.

Category

Scenario modifier

Syntax

path_different_origin([path1:]<field-name>,

[path2:]<field-name>)

Parameters

<field-name> is the name of a field in the scenario of type path. There must be two fields.

Example

do serial:

car1.drive(path1) with: path_different_origin(path1, path2)

17.4. path_explicit

Purpose

Specify a path using a list of points from a map.

Category

Scenario modifier

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 155

Syntax

path_explicit([path:]<field-name>,

[requests:]<list of point>,

[tolerance: <tolerance>])

Parameters

<field-name> is the name of a field in the scenario of type path.

<list of point> is a list of points from a specific map. Use the map.explicit_point() method to
translate an OpenDRIVE road id and offset to a point.

map.explicit_point() has four parameters:

• an OpenDrive segment id as a string.

• a subsegment – not used now; set to 0.

• an offset – the distance from the start of the road.

• the lane number.

<tolerance> is an unsigned integer representing a percentage of the total path. For example, if
the path length is 100 meter and the tolerance is 5, then the difference between the planned
way point and the input way point is within 5 meters. The default is 0.

Example

This example specifies the hooder.xodr map. The first point is on the “-15” road and 20 meter
from the start on the first lane. The second is 130 meter from the start.

extend top.main:

do a: cut_in_and_slow() with:

set_map("hooder.xodr")

path_explicit(a.path1,

[map.explicit_point("-15",0,20meter,1),

map.explicit_point("-15",0,130meter,1)],

tolerance:1)

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 156

17.5. path_facing

Purpose

Specify that two paths approach from opposite directions.

Category

Scenario modifier

Syntax

path_facing([path1:]<field-name>,

[path2:]<field-name>)

Parameters

<field-name> is the name of a field in the scenario of type path. There must be two fields.

Example

do serial:

car1.drive(path1) with: path_facing(path1, path2)

17.6. path_has_sign

Purpose

Specify that the path has a sign.

Category

Scenario modifier

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 157

Syntax

path_has_sign([path:]<field-name>,

[sign:]<sign-type>)

Parameters

<field-name> is the name of a field in the scenario of type path.

<sign-type> is one of the values of the enumerated type sign_type:

• speed_limit

• stop_sign

• yield

• roundabout

Example

do serial:

car1.drive(path1) with:

path_has_sign(path1, sign: yield)

17.7. path_has_no_signs

Purpose

Specify that the path have no signs

Category

Scenario modifier

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 158

Syntax

path_has_no_signs([path:]<field-name>)

Parameters

<field-name> is the name of a field in the scenario of type path.

Example

do serial:

car1.drive(path1) with:

path_has_no_signs(path1)

17.8. path_length

Purpose

Specify the length of a path and whether it might have an intersection.

Category

Scenario modifier

Syntax

path_length([path:]<field-name>,

[[min_path_length:]<min-distance>,]

[[max_path_length:]<max-distance>,]

[[allow_junction:]<bool>])

Parameters

<field-name> is the name of a field in the scenario of type path.

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 159

<min-distance> is a value of type distance. The default is 120meter.

<max-distance> is a value of type distance. The default is 150meter.

<bool> is true or false. The default is true.

Example

do serial:

car1.drive(path1) with:

path_length(path: path1, min_path_length: 150meter,

max_path_length: 175meter, allow_junction: true)

17.9. path_max_lanes

Purpose

Specify the maximum number of driving lanes in a path.

Category

Scenario modifier

Syntax

path_max_lanes([path:]<field-name>,

[max_lanes:]<int>)

Parameters

<field-name> is the name of a field in the scenario of type path.

<int> is an integer value specifying the maximum number of lanes.

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 160

Example

do serial:

car1.drive(path1) with:

path_max_lanes(path1, 2) # Needs no more than two lanes

17.10. path_min_driving_lanes

Purpose

Specify the minimum number of driving lanes in a path.

Category

Scenario modifier

Syntax

path_min_driving_lanes([path:]<field-name>,

[min_driving_lanes:]<int>)

Parameters

<field-name> is the name of a field in the scenario of type path.

<int> is an integer value specifying the minimum number of driving lanes.

Example

do serial:

car1.drive(path1) with:

path_min_driving_lanes(path1, 2) # Needs at least two driving lanes

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 161

17.11. path_min_lanes

Purpose

Specify the minimum number of lanes in a path.

Category

Scenario modifier

Syntax

path_min_lanes([path:]<field-name>,

[min_lanes:]<int>)

Parameters

<field-name> is the name of a field in the scenario of type path.

<int> is an integer value specifying the minimum number of lanes.

Example

do serial:

car1.drive(path1) with:

path_min_lanes(path1, 2) # Needs at least two lanes

17.12. path_over_highway_junction

Purpose

Specify that the path pass through a junction on a highway.

Category

Scenario modifier

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 162

Syntax

path_over_highway_junction([junction: <field-name>,]

[start_type: <road_type>,]

[end_type: <road_type>,]

[distance_before: <distance>,]

[distance_after: <distance>,]

[distance_in: <distance>,]

[path: <path>])

Parameters

<field-name> is a field in the scenario of type junction.

<road_type> is a field in the scenario of type road_type or one of:

• unknown

• highway

• highway_entry

• highway_exit

• highway_entry_exit

<distance> is a value or a range with a distance unit.

<path> is a field of type path specifying the intersecting road at the junction.

Example

do serial:

car1.drive(path1) with:

path_over_highway_junction(junction: junction, start_type: highway, end_type:

highway_exit,

distance_in:[5..10]m, path:path2)

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 163

17.13. path_over_junction

Purpose

Specify that the path pass through a junction.

Category

Scenario modifier

Syntax

path_over_junction([[junction:]<field-name>,]

[[direction:]<direction>,]

[distance_before: <distance>,]

[distance_after: <distance>,]

[distance_in: <distance>])

Parameters

<field-name> is a field in the scenario of type junction.

<direction> is a field in the scenario of type direction or one of:

• other

• straight # (-20..20] degrees

• rightish # (20..70] degrees

• right # (70..110] degrees

• back_right # (110..160] degrees

• backwards # (160..200] degrees

• back_left # (200..250] degrees

• left # (250..290] degrees

• leftish # (290..340] degrees

<distance> is a value or a range with a distance unit.

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 164

Example

scenario car.traverse_junction:

path1: path

car1: car

junction1: junction

direction1: direction

do serial:

car1.drive(path1) with:

path_over_junction(

junction1,

direction1,

distance_before: [5..10]meter,

distance_after: [5..10]meter)

17.14. path_over_lanes_decrease

Purpose

Specify that the number of lanes in a path must decrease.

Category

Scenario modifier

Syntax

path_over_lanes_decrease([path: <field-name>,]

[sp_more_lanes_path_length: <distance>,]

[more_lanes_path: <sub-path>])

Parameters

<field-name> is the name of a field in the scenario of type path.

<distance> is the length of the path that has more lanes.

<sub-path> is the segment of the path that has more lanes. It must be of type sub_path.

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 165

Example

scenario dut.scenario1:

path1: path

path1a: sub_path

car1: car

do serial:

car1.drive(path1) with:

path_over_lanes_decrease(path: path1,

sp_more_lanes_path_length: 20meter,

more_lanes_path: path1a)

17.15. path_over_speed_limit_change

Purpose

Specify that the path pass through a change in the speed limit.

Category

Scenario modifier

Syntax

path_over_speed_limit_change([path: <field-name>,]

[path1_legal_speed: <speed>,]

[path2_legal_speed: <speed>])

Parameters

<field-name> is a field of type path specifying the intersecting road at the junction.

<speed> is a value or a field in the scenario of type speed.

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 166

Example

do serial:

car1.drive(path1) with:

path_over_speed_limit_change(path: path1, path1_legal_speed: 80kph, path2_lega

l_speed: 50kph)

17.16. paths_overlap

Purpose

Specify that two path instances must overlap.

Category

Scenario modifier

Syntax

paths_overlap([path1:]<field-name>,

[path2:]<field-name>)

Parameters

<field-name> is the name of a field in the scenario of type path. There must be two fields.

Example

do serial:

car1.drive(path1) with: paths_overlap(path1, path2)

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 167

17.17. path_same_dest

Purpose

Specify that two paths have the same destination.

Category

Scenario modifier

Syntax

path_same_dest([path1:]<field-name>,

[path2:]<field-name>)

Parameters

<field-name> is the name of a field in the scenario of type path.

Example

do serial:

car1.drive(path1) with:

path_same_dest(path1, path2)

17.18. path_same_origin

Purpose

Specify that two paths have the same origin.

Category

Scenario modifier

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 168

Syntax

path_same_origin([path1:]<field-name>,

[path2:]<field-name>)

Parameters

<field-name> is the name of a field in the scenario of type path.

Example

do serial:

car1.drive(path1) with:

path_same_origin(path1, path2)

17.19. set_map

Purpose

Specify the map used in the test

Category

Scenario modifier

Syntax

set_map([name:]<string>)

Parameters

<string> is the name of a map for the test.

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 169

Description

The set_map() modifier accepts a filename as the only parameter.

Example

do serial:

car1.drive(path1) with:

set_map("hooder.xodr")

Map-related scenario modifiers PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 170

18. Change log
Summary: This topic will show all significant changes to this manual by version.

18.1. Version 20.07
• Added a gen_mode parameter to the movement-related scenario modifiers. See

Movement-related scenario modifiers (page 138).

• Added a chapter on inheritance. See Inheritance (page 46).

• Created a new description of metrics to include both cover() and record(). See
Coverage and Performance Metrics (page 69).

• Moved the Predefined AV Types section to a new chapter. See Predefined AV types
(page 35).

• Clarified that the on scenario modifier can call an external method. See on qualified
event (page 131).

• Added the trace() scenario modifier. See trace() (page 134).

• Updated the list of generic numeric types. See Generic numeric types (page 24).

• Clarified the optional parameters for the map-related modifiers as well as which
parameters can be passed by order. See Chapter 15 (page 153).

• Updated the descriptions of the overlap parameter of mix()*. See mix (page 108).

• Changed the names of the messaging scenarios. See Zero-time messaging scenarios
(page 124).

• Replaced like inheritance and when subtypes with simple and conditional inheritance.
See actor (page 53), scenario (page 63) and struct (page 66).

• Rewrote the introduction. See Introduction (page 5).

• Added an example of constraining a field of an enumerated type to a list of values. See
keep (page 87).

• Described the predefined struct fields of the car actor, including car.physical,
car.policy, car.state, and car.passing_by_info, as well as predefined events and soft
constraints. See Predefined car actor fields (page 36).

• Noted that user-defined identifiers beginning with a digit are not supported. See User-
defined identifiers, constants and keywords (page 16).

• Clarified the scoping rules for accessing objects within it. See Predefined identifiers
(page 16).

Change log PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 171

• Clarified the description of the effect of using a time parameter with ahead_of or
behind_of in the position() modifier. See position (page 148).

• Documented the syntax for floating point numbers (reals). See Generic numeric types
(page 24).

• Noted that enumerated types can be extended. See extend (page 57).

• Added the duration parameter to drive(). See drive (page 126).

• Updated the syntax description for external methods to show that is <bind-exp> is
allowed. See external method declaration (page 80).

• Modified the syntax for the repeat operator to show that with: blocks are not allowed.
See repeat (page 114).

• Clarified the syntax and context for invoking scenario modifiers. See Scenario modifier
invocation (page 94).

• Documented read_only constraints. See Read only constraints (page 91).

• Changed collides() to avoid_collisions(). See avoid_collisions (page 141).

• Specified that scenario modifiers can be extended. See extend (page 57) and modifier
(page 61).

• Noted that the keyword default can be used when passing parameters in scenario
invocations to specify default keep() constraints on field values. See Scenario
invocation (page 98).

18.2. Version 0.9.1
The following changes appear in version 0.9.1:

• Expanded the description of list elements. See List types (page 26).

• Updated the syntax for emit to show that parameters must be passed by name, not
position. See emit (page 118).

• Updated the description of weather_type and time_of_day. Added road_type. See
Predefined AV types (page 44).

• Documented the map modifiers path_same_origin(), path_over_highway_junction()
and path_over_speed_limit_change(). See Map modifiers (page 153).

• Identified the parameters that can be passed by position in builtin and library
scenarios by enclosing the parameter name in square brackets in the Syntax section
of each scenario description. For an example, see the path parameter for drive() (page
126).

• Clarified the difference between soft and default constraints. See Soft constraints and

Change log PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 172

default constraints (page 93).

• Added a definition of basic clock and replaced all references to top.clk with basic
clock. See Terminology (page 31).

• Noted that cover() definitions are not allowed in scenario invocations, including
operator scenario invocations, or in scenario modifiers. cover() definitions are allowed
in field declarations. See Scenario Invocation (page 98).

• Added me and actor to the list of predefined identifiers and added an example. See
User-defined identifiers, constants and keywords (page 16).

• Documented the new scheme for implicit labels, which uses label(). See Automatic
labels (page 100).

• Changed the no_collides() movement scenario modifier to collides(). Note: in 20.07
changed again to avoid_collisions().

• Added a definition of “phase” as an informal term. See Terminology (page 31) and
parallel (page 112).

• Restricted the use of “top-level scenario” to refer to top.main.

• Corrected the example for the use of outer in the in scenario modifier. See in modifier
(page 129).

• Removed the defaults for the first parameter of change_speed(), position(), and
speed(). Marked both parameters of change_lane() as optional. See Movement-
related modifiers (page 138).

• Added a physical unit for speed, meter_per_second or mps. See Physical types
(page 25).

• Documented the default file extension as .sdl and the use of the SDL_PATH
environment variable. See M-SDL file structure (page 21).

• Documented the name option of cover(). See cover (page 69).

• Documented the lateral() movement modifier. See lateral (page 147).

• Clarified the syntax for declaring and calling an external method. See external method
declaration (page 80).

• Simplified the syntax for with blocks in scenario and scenario modifier invocation.
Passing with members as parameters is no longer allowed for scenario and scenario
modifier invocation. See drive (page 126), Operator scenarios (page 102), Scenario
invocation (page 98), and Scenario modifier invocation (page 94).

• Added the physical types temperature and weight. See Physical types (page 25).

• Clarified that empty lines and single-line comments do not require a specific
indentation and modified the description and example of multi-line comments. See

Change log PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 173

Lexical conventions (page 13).

• Clarified that in when subtype declarations, the value specified for a when determinant
field must be a constant. Also clarified the syntax for applying constraints to fields in a
when subtype. Note: when subtypes were replaced in 20.07 with conditional
inheritance.

• Updated the list of keywords. See User-defined identifiers, constants and keywords
(page 16).

• Clarified that parentheses are not allowed in scenario declarations, but they are
required in all scenario invocations, except operator scenario invocations. Changed
code examples accordingly. See scenario (page 63) and Scenario invocation (page
98).

• Clarified the description and example of global actors. See Actor hierarchy and name
resolution (page 22).

• Added a definition of “path expression”. See Terminology (page 31).

• Added sample() to examples that show how to sample a field at a specified event.
See field (page 83).

• Added a note that enclosing parentheses for boolean expressions are optional for the
if operator. See if (page 103).

• Clarified that identifiers beginning with an underscore character are not allowed. See
User-defined identifiers, constants and keywords (page 16).

• Clarified that physical expressions, such as start_speed-1kph are allowed in ranges.
See Physical types (page 25).

18.3. Version 0.9
This version includes minor edits.

18.4. Version 0.8
The following changes appear in version 0.8:

• The agent type is changed to type actor because the term actor is used more
commonly by our target audience.

• The cover modifier can be declared in actor and struct types, not just in scenarios.

• A new modifier, until(qualified-event), is defined. It has the same functionality as on
qualified-event : end(), but it is more readable.

• The syntax for declaring enumerated types and for declaring modifiers is now correct.

Change log PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 174

• The import statement description is updated with the default .sdl description and
search sequence.

• Indentation units and the use of tabs is now clear.

• Integers in hexadecimal and readable decimal (100_000) format are supported.

• Use of the \ character either to escape a character within a string or to continue a
string over multiple lines is clarified.

• The definition of “test” and the difference between “concrete scenario” and “directed
scenario” have been clarified.

• The effect of adding modifiers using the in modifier is described.

• The tolerance parameter of the path_explicit modifier has been redefined.

Change log PDF last generated: July 10, 2020

Measurable Scenario Description Language Reference Page 175

	
	
	Table of Contents
	Introduction
	Using M-SDL
	M-SDL building blocks
	Example scenarios

	M-SDL basics
	Lexical conventions
	Document conventions
	User-defined identifiers, constants and keywords
	Predefined identifiers
	Example of predefined identifiers
	Scoping rules for accessing objects within it
	Predefined constants
	Keywords

	Overview of M-SDL constructs
	Statements
	Struct, actor or scenario members
	Scenario members
	Scenario invocations
	Expressions

	M-SDL file structure
	Actor hierarchy and name resolution
	Scenario name resolution
	Name resolution for other objects

	Data types
	Generic numeric types
	Physical types
	Boolean types
	Enumerated types
	List types
	String type
	Resource types
	Compound types

	M-SDL operators and special characters
	User task flow
	Terminology

	Predefined AV types
	Predefined actors
	Predefined env actor
	Predefined car actor
	Predefined car actor fields
	Configuring the car profile
	Predefined car.physical field
	Predefined car.policy field
	Predefined physical and policy constraints
	Predefined car.passing_by_info field
	Predefined car.state field
	Predefined car events
	Predefined car external methods

	Predefined AV enumerated types

	Inheritance
	Introduction
	Extension
	Unconditional inheritance
	Conditional Inheritance
	Relations between conditional and unconditional Inheritance
	Relations between conditional subtypes
	Type membership
	Preventing type reconvergence
	Type checking with the is() operator
	Type casting with the as() operator

	Scenario and modifier inheritance
	The in modifier

	Statements
	actor
	Purpose
	Category
	Syntax
	Syntax parameters
	<actor-name>
	<base-actor-type>
	<condition>
	<member>+

	Description
	Example actor declaration
	Example unconditional inheritance
	Example conditional inheritance

	enumerated type
	Purpose
	Category
	Syntax
	Syntax parameters
	<type-name>
	<member>*

	Description
	Example

	extend
	Purpose
	Category
	Syntax
	Syntax parameters
	<type-name>
	<member>+

	Description
	Example extend enumerated type
	Example extend struct
	Example extend scenario
	Example extend modifier

	import
	Purpose
	Category
	Syntax
	Syntax parameters
	<path-name>

	Description
	Example

	modifier
	Purpose
	Category
	Syntax
	Syntax parameters
	<name>
	<member>+

	Description
	Example 1
	Example 2

	scenario
	Purpose
	Category
	Syntax
	Syntax parameters
	<name>
	<base-scenario-type>
	<condition>
	<member>+

	Description
	Example scenario declaration
	Example scenario inheritance

	struct
	Purpose
	Category
	Syntax
	Syntax parameters
	<type-name>
	<base-struct-type>
	<condition>
	<member>+

	Description
	Example struct declaration
	Example struct unconditional inheritance
	Example struct conditional inheritance

	Struct, actor or scenario members
	Coverage and Performance Metrics
	cover()
	Purpose
	Category
	Syntax
	Syntax parameters
	<exp>
	<param>*

	Description
	Example field and cover declaration
	Cross coverage: combining coverage from different items

	record()
	Purpose
	Category
	Syntax
	Syntax parameters
	<exp>

	<param>*
	Description
	Cross record - Combining metrics

	cover() and record() parameters
	override
	Syntax
	Description
	Example
	Restrictions

	event
	Purpose
	Category
	Syntax
	Syntax parameters
	<event-name>
	<param>+
	<qualified-event>

	Description

	external method declaration
	Purpose
	Category
	Syntax
	Syntax parameters
	<msdl-method-name>
	<param>*
	<return-type>
	<bind-exp>

	Description
	Example

	field
	Purpose
	Category
	Syntax
	Syntax parameters
	!
	<field-name>
	<type>
	<sample>
	<with-block>

	Example scalar field declarations
	Example list field
	Example list field with constraints
	Example string field
	Example actor or struct field declarations
	Example scenario field
	Example sampling

	keep()
	Purpose
	Category
	Syntax
	Syntax parameters
	<constraint-type>
	<constraint-boolean-exp>

	Description
	Simple Boolean constraints
	Compound Boolean constraints

	Examples
	List constraints
	Read only constraints
	Relative strength of keep constraints
	Soft constraints and default constraints

	Scenario members
	Scenario modifier invocation
	Purpose
	Category
	Syntax
	Syntax parameters
	Description

	do (behavior definition)
	Purpose
	Category
	Syntax
	Syntax parameters
	Description

	Scenario invocation
	Purpose
	Category
	Syntax
	Syntax parameters
	<label-name>
	<scenario-name>
	<param*>
	<with-block>

	Example
	Automatic Label Computation
	Example

	Operator scenarios
	first_of
	Purpose
	Category
	Syntax
	Syntax parameters
	<scenario-list>
	<with-block>

	Description
	Example

	if
	Purpose
	Category
	Syntax
	Syntax parameters
	<bool-exp>

	<scenario>+
	Description
	Example

	match
	Purpose
	Category
	Syntax
	Syntax parameters
	<monitored-scenario>
	<success-scenario>
	<fail-scenario>

	Scenario arguments
	Description
	Example

	multi_match
	Purpose
	Category
	Syntax
	Syntax parameters
	<monitored-scenario>
	<success-scenario>
	<fail-scenario>

	Scenario arguments
	Description
	Example

	mix
	Purpose
	Category
	Syntax
	Syntax parameters
	<scenario-invocation>+
	<with-block>

	Scenario arguments
	Description

	one_of
	Purpose
	Category
	Syntax
	Syntax parameters
	<scenario-list>
	<with-block>

	Example

	parallel
	Purpose
	Category
	Syntax
	Syntax parameters
	<invocation-list>
	<with-block>

	Scenario arguments
	Description
	Example

	repeat
	Purpose
	Category
	Syntax
	Syntax parameters
	<scenario>+

	Scenario arguments
	Example

	serial
	Purpose
	Category
	Syntax
	Syntax parameters
	<scenario>+
	<with-block>

	Scenario arguments
	Description
	Example

	try
	Purpose
	Category
	Syntax
	Syntax parameters
	<scenario>+
	<else-scenario>+

	Description

	Event-related scenarios
	emit
	Purpose
	Category
	Syntax
	Syntax parameters
	<event-path>

	Scenario arguments

	wait
	Purpose
	Category
	Syntax
	Syntax parameters
	<qualified-event>

	Description
	Examples

	wait_time
	Purpose
	Category
	Syntax
	Scenario arguments
	Examples

	Zero-time scenarios
	call
	Purpose
	Category
	Syntax
	Syntax parameters
	<method>
	<param>*

	Example

	dut.error
	Purpose
	Category
	Syntax
	Scenario arguments

	end
	Purpose
	Category
	Syntax
	Scenario arguments
	Description
	Example

	fail
	Purpose
	Category
	Syntax
	Scenario arguments
	Description

	Zero-time messaging scenarios
	Purpose
	Category
	Syntax
	Scenario arguments
	Description
	Example

	Movement scenarios
	drive
	Purpose
	Category
	Syntax
	Parameters
	Example

	Implicit movement constraints
	Scenario modifiers
	in modifier
	Purpose
	Category
	Syntax
	Syntax parameters
	Description
	Example
	Example using outer

	on qualified event
	Purpose
	Category
	Syntax
	Syntax parameters
	<qualified-event>
	<member>

	Example

	synchronize
	Purpose
	Category
	Syntax
	Scenario arguments
	<inv-event1>, <inv-event2>
	<time-exp>

	Description
	Example

	trace()
	Purpose
	Category
	Syntax
	Syntax parameters
	<exp>
	<param>*

	Description
	Example trace definitions

	until
	Purpose
	Category
	Syntax
	Syntax parameters
	<qualified-event>

	Example

	Movement-related scenario modifiers
	acceleration
	Purpose
	Category
	Syntax
	Parameters
	Example

	avoid_collisions
	Purpose
	Category
	Syntax
	Parameters
	Description
	Example

	change_lane
	Purpose
	Category
	Syntax
	Parameters
	Examples

	change_speed
	Purpose
	Category
	Syntax
	Parameters
	Example

	keep_lane
	Purpose
	Category
	Syntax
	Example

	keep_position
	Purpose
	Category
	Syntax
	Example

	keep_speed
	Purpose
	Category
	Syntax
	Example

	lane
	Purpose
	Category
	Syntax
	Parameters
	Description
	Examples

	lateral
	Purpose
	Category
	Syntax
	Parameters
	Example

	position
	Purpose
	Category
	Syntax
	Parameters
	Description
	Examples

	speed
	Purpose
	Category
	Syntax
	Parameters
	Description
	Examples

	Map-related scenario modifiers
	path_curve
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_different_dest
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_different_origin
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_explicit
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_facing
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_has_sign
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_has_no_signs
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_length
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_max_lanes
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_min_driving_lanes
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_min_lanes
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_over_highway_junction
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_over_junction
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_over_lanes_decrease
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_over_speed_limit_change
	Purpose
	Category
	Syntax
	Parameters
	Example

	paths_overlap
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_same_dest
	Purpose
	Category
	Syntax
	Parameters
	Example

	path_same_origin
	Purpose
	Category
	Syntax
	Parameters
	Example

	set_map
	Purpose
	Category
	Syntax
	Parameters
	Description
	Example

	Change log
	Version 20.07
	Version 0.9.1
	Version 0.9
	Version 0.8

